无迹卡尔曼滤波python代码
时间: 2024-03-16 07:40:28 浏览: 209
无迹卡尔曼滤波(Unscented Kalman Filter,UKF)是一种非线性滤波算法,用于估计系统状态。下面是一个简单的无迹卡尔曼滤波的Python代码示例:
```python
import numpy as np
def unscented_kalman_filter(x, P, z, Q, R, f, h):
n = len(x)
m = len(z)
# 参数设置
alpha = 0.001
beta = 2
kappa = 0
# Sigma点生成
lambda_ = alpha**2 * (n + kappa) - n
c = n + lambda_
Wm = np.concatenate(([lambda_/c], np.ones(2*n)/2/c))
Wc = np.concatenate(([lambda_/c+(1-alpha**2+beta)], np.ones(2*n)/2/c))
sqrt_c = np.sqrt(c)
# 预测步骤
X = np.zeros((n, 2*n+1))
X[:, 0] = x
for i in range(n):
X[:, i+1] = x + sqrt_c * np.linalg.cholesky(P)[:, i]
X[:, n+i+1] = x - sqrt_c * np.linalg.cholesky(P)[:, i]
X_pred = f(X)
x_pred = np.dot(X_pred, Wm)
P_pred = np.zeros((n, n))
for i in range(2*n+1):
P_pred += Wc[i] * np.outer(X_pred[:, i] - x_pred, X_pred[:, i] - x_pred)
P_pred += Q
# 更新步骤
Z_pred = h(X_pred)
z_pred = np.dot(Z_pred, Wm)
Pz = np.zeros((m, m))
for i in range(2*n+1):
Pz += Wc[i] * np.outer(Z_pred[:, i] - z_pred, Z_pred[:, i] - z_pred)
Pz += R
Pxz = np.zeros((n, m))
for i in range(2*n+1):
Pxz += Wc[i] * np.outer(X_pred[:, i] - x_pred, Z_pred[:, i] - z_pred)
K = np.dot(Pxz, np.linalg.inv(Pz))
x = x_pred + np.dot(K, z - z_pred)
P = P_pred - np.dot(K, np.dot(Pz, K.T))
return x, P
# 示例函数f和h
def f(x):
return np.sin(x)
def h(x):
return x**2
# 初始化状态和协方差矩阵
x = np.array([0])
P = np.array([[1]])
# 测量数据
z = np.array([0.5])
# 过程噪声和测量噪声协方差矩阵
Q = np.array([[0.1]])
R = np.array([[0.1]])
# 执行无迹卡尔曼滤波
x_est, P_est = unscented_kalman_filter(x, P, z, Q, R, f, h)
print("估计的状态:", x_est)
print("估计的协方差矩阵:", P_est)
```
这段代码实现了一个简单的无迹卡尔曼滤波器,其中`f`和`h`分别表示状态转移函数和测量函数。你可以根据自己的需求修改这两个函数来适应不同的应用场景。
阅读全文