history_dict

时间: 2023-09-19 08:13:24 浏览: 27
history_dict是一个包含训练阶段所发生的一切事件的字典对象。它是由model.fit()方法返回的History对象的属性。这个字典包含了训练和验证过程中的几个条目,可以用来绘制训练与验证过程的损失值和准确率。具体而言,history_dict包含以下几个条目: - 'loss':训练过程中的损失值 - 'accuracy':训练过程中的准确率 - 'val_loss':验证过程中的损失值 - 'val_accuracy':验证过程中的准确率 你可以使用这些条目来查看训练与验证过程的损失值和准确率,以进行比较和分析。
相关问题

history_dict = history.history history_dict.keys()

根据提供的引用内容,`history_dict`是一个字典,其中包含了训练模型时的历史记录。`history_dict.keys()`可以用来获取这个字典的所有键值。下面是一个示例代码: ```python history_dict = history.history keys = history_dict.keys() print(keys) # 输出:dict_keys(['loss', 'accuracy']) ``` 这段代码将打印出`history_dict`字典的所有键值,即`['loss', 'accuracy']`。

history_dict =history loss_values = history_dict['loss'] 什么意思

这段代码的意思是从一个名为`history_dict`的字典中获取名为`loss`的键对应的值,并将其赋值给变量`loss_values`。通常在深度学习模型训练过程中,会记录每个epoch的训练损失(loss)和验证损失(val_loss)等指标,并将其存储在一个字典类型的变量中,用于后续的分析和可视化。因此,这段代码可以用于获取训练过程中每个epoch的训练损失值列表。

相关推荐

import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import keras import numpy as np #加载IMDB数据 imdb = keras.datasets.imdb (train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=100) print("训练记录数量:{},标签数量:{}".format(len(train_data),len(train_labels))) print(train_data[0]) #数据标准化 train_data = keras.preprocessing.sequence.pad_sequences(train_data,value=0,padding='post',maxlen=256) text_data = keras.preprocessing.sequence.pad_sequences(train_data,value=0,padding='post',maxlen=256) print(train_data[0]) #构建模型 vocab_size = 10000 model = tf.keras.Sequential([tf.keras.layers.Embedding(vocab_size, 64), tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64)), tf.keras.layers.Dense(64,activation='relu'), tf.keras.layers.Dense(1) ]) model.summary() #配置并训练模型 model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy']) x_val = train_data[:10000] partial_x_train = train_data[10000:] y_val = train_labels[:10000] partial_y_train = train_labels[10000:] history = model.fit(partial_x_train,partial_y_train,epochs=1,batch_size=512,validation_data=(x_val,y_val),verbose=1) #测试性能 results = model.evaluate(test_data, test_labels, verbose=2) print(results) #训练过程可视化 history_dict = history.history print(history_dict.keys()) def plot_graphs(history, string): plt.plot(history.history[string]) plt.plot(history.history['val_'+string]) plt.xlabel("Epochs") plt.ylabel(string) plt.legend([string,'val_'+string]) plt.show() plot_graphs(history,"accuracy") plot_graphs(history,"loss")

return data, label def __len__(self): return len(self.data)train_dataset = MyDataset(train, y[:split_boundary].values, time_steps, output_steps, target_index)test_ds = MyDataset(test, y[split_boundary:].values, time_steps, output_steps, target_index)class MyLSTMModel(nn.Module): def __init__(self): super(MyLSTMModel, self).__init__() self.rnn = nn.LSTM(input_dim, 16, 1, batch_first=True) self.flatten = nn.Flatten() self.fc1 = nn.Linear(16 * time_steps, 120) self.relu = nn.PReLU() self.fc2 = nn.Linear(120, output_steps) def forward(self, input): out, (h, c) = self.rnn(input) out = self.flatten(out) out = self.fc1(out) out = self.relu(out) out = self.fc2(out) return outepoch_num = 50batch_size = 128learning_rate = 0.001def train(): print('训练开始') model = MyLSTMModel() model.train() opt = optim.Adam(model.parameters(), lr=learning_rate) mse_loss = nn.MSELoss() data_reader = DataLoader(train_dataset, batch_size=batch_size, drop_last=True) history_loss = [] iter_epoch = [] for epoch in range(epoch_num): for data, label in data_reader: # 验证数据和标签的形状是否满足期望,如果不满足,则跳过这个批次 if data.shape[0] != batch_size or label.shape[0] != batch_size: continue train_ds = data.float() train_lb = label.float() out = model(train_ds) avg_loss = mse_loss(out, train_lb) avg_loss.backward() opt.step() opt.zero_grad() print('epoch {}, loss {}'.format(epoch, avg_loss.item())) iter_epoch.append(epoch) history_loss.append(avg_loss.item()) plt.plot(iter_epoch, history_loss, label='loss') plt.legend() plt.xlabel('iters') plt.ylabel('Loss') plt.show() torch.save(model.state_dict(), 'model_1')train()param_dict = torch.load('model_1')model = MyLSTMModel()model.load_state_dict(param_dict)model.eval()data_reader1 = DataLoader(test_ds, batch_size=batch_size, drop_last=True)res = []res1 = []# 在模型预测时,label 的处理for data, label in data_reader1: data = data.float() label = label.float() out = model(data) res.extend(out.detach().numpy().reshape(data.shape[0]).tolist()) res1.extend(label.numpy().tolist()) # 由于预测一步,所以无需 reshape,直接转为 list 即可title = "t321"plt.title(title, fontsize=24)plt.xlabel("time", fontsize=14)plt.ylabel("irr", fontsize=14)plt.plot(res, color='g', label='predict')plt.plot(res1, color='red', label='real')plt.legend()plt.grid()plt.show()的运算过程

import ast from dataclasses import dataclass from typing import List import pandas as pd import json ["text", "六十一岁还能办什么保险"] @dataclass class FAQ: title: str sim_questions: List[str] answer: str faq_id: int ori_data = pd.read_csv('baoxianzhidao_filter.csv') data = [] exist_titles = set() for index, row in enumerate(ori_data.iterrows()): row_dict = row[1] title = row_dict['title'] if title not in exist_titles: data.append(FAQ(title=title, answer=row_dict['reply'], sim_questions=[title], faq_id=index)) exist_titles.add(title) from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks pipeline_ins = pipeline(Tasks.faq_question_answering, 'damo/nlp_mgimn_faq-question-answering_chinese-base') bsz = 32 all_sentence_vecs = [] batch = [] sentence_list = [faq.title for faq in data] for i,sent in enumerate(sentence_list): batch.append(sent) if len(batch) == bsz or (i == len(sentence_list)-1 and len(batch)>0): # if i == len(sentence_list)-1 and len(batch)>0: sentence_vecs = pipeline_ins.get_sentence_embedding(batch) all_sentence_vecs.extend(sentence_vecs) batch.clear() import faiss import numpy as np hidden_size = pipeline_ins.model.network.bert.config.hidden_size # hidden_size = pipeline_ins.model.bert.config.hidden_size index = faiss.IndexFlatIP(hidden_size) vecs = np.asarray(all_sentence_vecs, dtype='float32') index.add(vecs) from modelscope.outputs import OutputKeys def ask_faq(input, history=[]): # step1: get sentence vector of query query_vec = pipeline_ins.get_sentence_embedding([input])[0] query_vec = np.asarray(query_vec, dtype='float32').reshape([1, -1]) # step2: faq dense retrieval _, indices = index.search(query_vec, k=30) # step3: build support set support_set = [] for i in indices.tolist()[0]: faq = data[i] support_set.append({"text": faq.title, "label": faq.faq_id, "index": i}) # step4: faq ranking rst = pipeline_ins(input={"query_set": input, "support_set": support_set}) rst = rst[OutputKeys.OUTPUT][0][0] pred_label = rst['label'] pred_score = rst['score'] # get answer by faq_id pred_answer = "" pred_title = "" for faq in data: if faq.faq_id == pred_label: pred_answer = faq.answer pred_title = faq.title break history.append((f'{pred_answer}|(pred_title:{pred_title},pred_score:{pred_score:.3f})')) return history优化这段代码

@app.route('/') def index(): return render_template('index2.html') @app.route('/submit', methods=['POST']) def submit(): # 从前端获取表单数据 line = request.form['line'] date = request.form['date'] model = request.form['model'] issue = request.form['issue'] prod_date = request.form['prod_date'] shift = request.form['shift'] prod_line = request.form['prod_line'] responsible = request.form['responsible'] # 将数据存储到 Excel 文件中 file_path = 'D:/data.xlsx' wb = load_workbook(file_path) ws = wb.active ws.append([line, date, model, issue, prod_date, shift, prod_line, responsible]) wb.save(file_path) return '數據保存成功' @app.route('/history') def history(): # 从 Excel 文件中读取历史记录 file_path = 'D:/data.xlsx' df = pd.read_excel(file_path,keep_default_na=False) # 获取查询参数 query_date = request.args.get('date') query_line = request.args.get('line') query_model = request.args.get('model') # 进行查询 if query_date: df = df[df['确认日期'] == query_date] if query_line: df = df[df['确认线别'] == query_line] if query_model: df = df[df['异常机种'] == query_model] # 生成汇总图表 chart_data = df.groupby('异常现象').size().reset_index(name='count') chart_labels = chart_data['异常现象'].tolist() chart_values = chart_data['count'].tolist() return render_template('history.html', data=df.to_dict('records'), chart_labels=chart_labels, chart_values=chart_values) @app.route('/chart') def chart(): return render_template('chart.html')

最新推荐

recommend-type

一个基于C语言的简易学生管理系统.zip

C语言是一种广泛使用的编程语言,它具有高效、灵活、可移植性强等特点,被广泛应用于操作系统、嵌入式系统、数据库、编译器等领域的开发。C语言的基本语法包括变量、数据类型、运算符、控制结构(如if语句、循环语句等)、函数、指针等。在编写C程序时,需要注意变量的声明和定义、指针的使用、内存的分配与释放等问题。C语言中常用的数据结构包括: 1. 数组:一种存储同类型数据的结构,可以进行索引访问和修改。 2. 链表:一种存储不同类型数据的结构,每个节点包含数据和指向下一个节点的指针。 3. 栈:一种后进先出(LIFO)的数据结构,可以通过压入(push)和弹出(pop)操作进行数据的存储和取出。 4. 队列:一种先进先出(FIFO)的数据结构,可以通过入队(enqueue)和出队(dequeue)操作进行数据的存储和取出。 5. 树:一种存储具有父子关系的数据结构,可以通过中序遍历、前序遍历和后序遍历等方式进行数据的访问和修改。 6. 图:一种存储具有节点和边关系的数据结构,可以通过广度优先搜索、深度优先搜索等方式进行数据的访问和修改。 这些数据结构在C语言中都有相应的实现方式,可以应用于各种不同的场景。C语言中的各种数据结构都有其优缺点,下面列举一些常见的数据结构的优缺点: 数组: 优点:访问和修改元素的速度非常快,适用于需要频繁读取和修改数据的场合。 缺点:数组的长度是固定的,不适合存储大小不固定的动态数据,另外数组在内存中是连续分配的,当数组较大时可能会导致内存碎片化。 链表: 优点:可以方便地插入和删除元素,适用于需要频繁插入和删除数据的场合。 缺点:访问和修改元素的速度相对较慢,因为需要遍历链表找到指定的节点。 栈: 优点:后进先出(LIFO)的特性使得栈在处理递归和括号匹配等问题时非常方便。 缺点:栈的空间有限,当数据量较大时可能会导致栈溢出。 队列: 优点:先进先出(FIFO)的特性使得
recommend-type

数通系列ospf学习思维导图

数通系列ospf学习思维导图
recommend-type

保险服务门店新年工作计划PPT.pptx

在保险服务门店新年工作计划PPT中,包含了五个核心模块:市场调研与目标设定、服务策略制定、营销与推广策略、门店形象与环境优化以及服务质量监控与提升。以下是每个模块的关键知识点: 1. **市场调研与目标设定** - **了解市场**:通过收集和分析当地保险市场的数据,包括产品种类、价格、市场需求趋势等,以便准确把握市场动态。 - **竞争对手分析**:研究竞争对手的产品特性、优势和劣势,以及市场份额,以进行精准定位和制定有针对性的竞争策略。 - **目标客户群体定义**:根据市场需求和竞争情况,明确服务对象,设定明确的服务目标,如销售额和客户满意度指标。 2. **服务策略制定** - **服务计划制定**:基于市场需求定制服务内容,如咨询、报价、理赔协助等,并规划服务时间表,保证服务流程的有序执行。 - **员工素质提升**:通过专业培训提升员工业务能力和服务意识,优化服务流程,提高服务效率。 - **服务环节管理**:细化服务流程,明确责任,确保服务质量和效率,强化各环节之间的衔接。 3. **营销与推广策略** - **节日营销活动**:根据节庆制定吸引人的活动方案,如新春送福、夏日促销,增加销售机会。 - **会员营销**:针对会员客户实施积分兑换、优惠券等策略,增强客户忠诚度。 4. **门店形象与环境优化** - **环境设计**:优化门店外观和内部布局,营造舒适、专业的服务氛围。 - **客户服务便利性**:简化服务手续和所需材料,提升客户的体验感。 5. **服务质量监控与提升** - **定期评估**:持续监控服务质量,发现问题后及时调整和改进,确保服务质量的持续提升。 - **流程改进**:根据评估结果不断优化服务流程,减少等待时间,提高客户满意度。 这份PPT旨在帮助保险服务门店在新的一年里制定出有针对性的工作计划,通过科学的策略和细致的执行,实现业绩增长和客户满意度的双重提升。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果

![MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果](https://img-blog.csdnimg.cn/d3bd9b393741416db31ac80314e6292a.png) # 1. 图像去噪基础 图像去噪旨在从图像中去除噪声,提升图像质量。图像噪声通常由传感器、传输或处理过程中的干扰引起。了解图像噪声的类型和特性对于选择合适的去噪算法至关重要。 **1.1 噪声类型** * **高斯噪声:**具有正态分布的加性噪声,通常由传感器热噪声引起。 * **椒盐噪声:**随机分布的孤立像素,值要么为最大值(白色噪声),要么为最小值(黑色噪声)。 * **脉冲噪声
recommend-type

InputStream in = Resources.getResourceAsStream

`Resources.getResourceAsStream`是MyBatis框架中的一个方法,用于获取资源文件的输入流。它通常用于加载MyBatis配置文件或映射文件。 以下是一个示例代码,演示如何使用`Resources.getResourceAsStream`方法获取资源文件的输入流: ```java import org.apache.ibatis.io.Resources; import java.io.InputStream; public class Example { public static void main(String[] args) {
recommend-type

车辆安全工作计划PPT.pptx

"车辆安全工作计划PPT.pptx" 这篇文档主要围绕车辆安全工作计划展开,涵盖了多个关键领域,旨在提升车辆安全性能,降低交通事故发生率,以及加强驾驶员的安全教育和交通设施的完善。 首先,工作目标是确保车辆结构安全。这涉及到车辆设计和材料选择,以增强车辆的结构强度和耐久性,从而减少因结构问题导致的损坏和事故。同时,通过采用先进的电子控制和安全技术,提升车辆的主动和被动安全性能,例如防抱死刹车系统(ABS)、电子稳定程序(ESP)等,可以显著提高行驶安全性。 其次,工作内容强调了建立和完善车辆安全管理体系。这包括制定车辆安全管理制度,明确各级安全管理责任,以及确立安全管理的指导思想和基本原则。同时,需要建立安全管理体系,涵盖安全组织、安全制度、安全培训和安全检查等,确保安全管理工作的系统性和规范性。 再者,加强驾驶员安全培训是另一项重要任务。通过培训提高驾驶员的安全意识和技能水平,使他们更加重视安全行车,了解并遵守交通规则。培训内容不仅包括交通法规,还涉及安全驾驶技能和应急处置能力,以应对可能发生的突发情况。 此外,文档还提到了严格遵守交通规则的重要性。这需要通过宣传和执法来强化,以降低由于违反交通规则造成的交通事故。同时,优化道路交通设施,如改善交通标志、标线和信号灯,可以提高道路通行效率,进一步增强道路安全性。 在实际操作层面,工作计划中提到了车辆定期检查的必要性,包括对刹车、转向、悬挂、灯光、燃油和电器系统的检查,以及根据车辆使用情况制定检查计划。每次检查后应记录问题并及时处理,以确保车辆始终处于良好状态。 最后,建立车辆安全信息管理系统也是关键。通过对车辆事故和故障情况进行记录和分析,可以为安全管理提供数据支持,以便及时发现问题,预防潜在风险,并对事故进行有效处理和责任追究。 这份车辆安全工作计划全面覆盖了从车辆本身到驾驶员行为,再到道路环境的诸多方面,旨在构建一个全方位、多层次的车辆安全管理体系,以降低交通事故风险,保障道路交通安全。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB图像去噪行业应用:从医疗到遥感,解锁图像去噪的无限潜力

![MATLAB图像去噪行业应用:从医疗到遥感,解锁图像去噪的无限潜力](https://img-blog.csdnimg.cn/img_convert/3aa5d0402a313c17c3c9ffa85b40f683.png) # 1. MATLAB图像去噪概述 **1.1 图像去噪的重要性** 图像去噪是图像处理中一项至关重要的任务,它旨在从图像中去除不需要的噪声,从而提高图像的质量和可理解性。图像噪声可能来自各种来源,如传感器缺陷、环境干扰和数据传输错误。 **1.2 MATLAB图像去噪的优势** MATLAB是一个强大的技术计算环境,提供了一系列图像去噪算法和工具。MATLA
recommend-type

使用pyrhon编写mapreduce

MapReduce是一种用于处理大规模数据集的编程模型和算法。它通常用于分布式计算环境中,可以高效地处理大量数据并实现并行计算。在Python中,我们可以使用Hadoop Streaming来编写MapReduce程序。 下面是使用Python编写MapReduce的基本步骤: 1. Map阶段: - 编写一个mapper函数,该函数接收输入数据并将其转换为键值对的形式。 - 使用标准输入(sys.stdin)读取输入数据,并使用标准输出(sys.stdout)输出键值对。 2. Reduce阶段: - 编写一个reducer函数,该函数接收来自mapper函数输出的键