fp算法python代码
时间: 2025-01-08 11:05:10 浏览: 3
### FP-Growth Algorithm Implementation in Python
The FP-Growth (Frequent Pattern Growth) algorithm is an efficient and scalable method for mining frequent itemsets. Below is a simplified version of how one might implement this algorithm using Python:
#### Importing Necessary Libraries
To start with, several libraries need importing to facilitate operations such as data manipulation.
```python
from collections import defaultdict
import itertools
```
#### Defining Helper Functions
Helper functions assist in constructing the FP-tree structure and extracting patterns from it.
```python
def create_fp_tree(data_set, min_support=1):
header_table = {}
# Count frequency of each item
for transaction in data_set:
for item in transaction:
header_table[item] = header_table.get(item, 0) + data_set[transaction]
# Remove items not meeting minimum support level
for k in list(header_table):
if header_table[k] < min_support:
del(header_table[k])
freq_itemset = set(header_table.keys())
if len(freq_itemset) == 0:
return None, None
for k in header_table:
header_table[k] = [header_table[k], None]
ret_tree = TreeNode('Null Set', 1, None)
for tran_set, count in list(data_set.items()):
local_d = {}
for item in tran_set:
if item in freq_itemset:
local_d[item] = header_table[item][0]
if len(local_d) > 0:
ordered_items = [v[0] for v in sorted(local_d.items(), key=lambda p: p[1], reverse=True)]
update_tree(ordered_items, ret_tree, header_table, count)
return ret_tree, header_table
class TreeNode:
def __init__(self, name_value, num_occur, parent_node):
self.name = name_value
self.count = num_occur
self.node_link = None
self.parent = parent_node
self.children = {}
def inc(self, num_occur):
self.count += num_occur
def disp(self, ind=1):
print(' '*ind, self.name, ' ', self.count)
for child in self.children.values():
child.disp(ind+1)
def update_header(node_to_test, target_node):
while node_to_test.node_link != None:
node_to_test = node_to_test.node_link
node_to_test.node_link = target_node
def update_tree(items, in_tree, header_table, count):
if items[0] in in_tree.children:
in_tree.children[items[0]].inc(count)
else:
in_tree.children[items[0]] = TreeNode(items[0], count, in_tree)
if header_table[items[0]][1] == None:
header_table[items[0]][1] = in_tree.children[items[0]]
else:
update_header(header_table[items[0]][1], in_tree.children[items[0]])
if len(items) > 1:
update_tree(items[1::], in_tree.children[items[0]], header_table, count)
```
This implementation covers creating an FP tree based on transactions provided by users or applications[^1]. It also includes classes and methods necessary for managing nodes within the tree structure efficiently.
For completeness, additional components would be required to fully utilize the power of FP-growth including pattern generation through conditional pattern bases and extraction algorithms that traverse the constructed trees looking for significant associations between elements present therein.
阅读全文