opencv怎么得到一个矩形的四个角的坐标
时间: 2024-10-24 16:13:32 浏览: 52
在OpenCV中,如果你想获取一个矩形的四个顶点坐标,通常当你已经有了一个矩形区域(例如通过`cv2.boundingRect()`函数得到),你可以直接通过这个矩形的宽和高以及中心点坐标来计算每个角落的坐标。矩形的四个顶点可以按照顺时针方向表示为左上、右上、右下和左下的顺序。
假设矩形的中心点是`(x, y)`,宽度是`w`,高度是`h`,那么各个顶点的坐标可以这样计算:
- 左上角 (`left_top`) : `(x - w / 2, y - h / 2)`
- 右上角 (`right_top`) : `(x + w / 2, y - h / 2)`
- 右下角 (`right_bottom`) : `(x + w / 2, y + h / 2)`
- 左下角 (`left_bottom`) : `(x - w / 2, y + h / 2)`
这里注意的是OpenCV的坐标系统是以图像的左上角为原点,水平向右增大,垂直向下增大的。如果你需要逆序的坐标(从原始图像看,坐标是从右下角开始递减),则需要相应地调整负号的位置。
如果你有一个具体的矩形对象或者边界框(如`Rect`结构),可以直接访问其成员变量来获取坐标。
```python
# 假设rect是一个Rect对象,包含(x, y, w, h)信息
top_left = (rect.x, rect.y)
top_right = (rect.x + rect.width, rect.y)
bottom_right = (rect.x + rect.width, rect.y + rect.height)
bottom_left = (rect.x, rect.y + rect.height)
```
阅读全文
相关推荐

















