Jacobi 迭代法
时间: 2023-11-25 12:07:38 浏览: 107
Jacobi迭代法学习教案.pptx
Jacobi迭代法是一种比较简单的线性方程组迭代法。它的基本思想是将线性方程组 $Ax=b$ 的系数矩阵 $A$ 分解为 $A=M-N$,其中 $M$ 为 $A$ 的主对角线元素构成的对角矩阵,$N=A-M$。然后,将方程组 $Ax=b$ 转化为 $Mx^{(k+1)}=Nx^{(k)}+b$ 的形式,即 $x^{(k+1)}=M^{-1}Nx^{(k)}+M^{-1}b$,其中 $x^{(k)}$ 表示第 $k$ 次迭代的解向量。Jacobi迭代法的迭代公式为:$x_i^{(k+1)}=\frac{1}{a_{ii}}(b_i-\sum_{j\neq i}a_{ij}x_j^{(k)})$,其中 $a_{ii}$ 表示系数矩阵 $A$ 的第 $i$ 行第 $i$ 列元素。
Jacobi迭代法的收敛条件是:系数矩阵 $A$ 严格对角占优或对称正定。此外,Jacobi迭代法的误差估计为:$||x-x^{(k)}||\leq\frac{||B||}{1-||B||}\cdot||x^{(k+1)}-x^{(k)}||$,其中 $B=M^{-1}N$。
阅读全文