jacobi迭代法matlab代码
时间: 2023-09-04 13:08:20 浏览: 118
以下是Jacobi迭代法的MATLAB代码:
```matlab
function [x, error, iter] = jacobi_iteration(A, b, x0, tol, max_iter)
% Jacobi迭代法解Ax=b
% A = 系数矩阵
% b = 常数向量
% x0 = 初始解向量
% tol = 相对误差容限
% max_iter = 最大迭代次数
% 获取系数矩阵的对角线元素
D = diag(diag(A));
% 获取系数矩阵的非对角线元素
R = A - D;
% 计算逆矩阵
inv_D = inv(D);
% 初始化解向量、误差和迭代计数器
x = x0;
error = inf;
iter = 0;
while error > tol && iter < max_iter
% Jacobi迭代公式
x = inv_D * (b - R * x);
% 计算相对误差
error = norm(x - x0) / norm(x);
% 更新初始解向量
x0 = x;
% 更新迭代计数器
iter = iter + 1;
end
```
以上是Jacobi迭代法的MATLAB代码。希望能够帮助您解决问题。
相关问题
Jacobi迭代法Matlab代码
Jacobi迭代法是一种用于求解线性方程组的数值方法,尤其适用于大型稀疏矩阵。以下是使用Matlab编写的一个基本的Jacobi迭代法求解方程组的简单示例:
```matlab
function [x, iter] = jacobi(A, b, tolerance, maxIter)
% A: 系数矩阵 (二维数组)
% b: 右手边向量 (一维数组)
% tolerance: 迭代终止的精度阈值
% maxIter: 最大迭代次数
% 初始化迭代变量
x = zeros(size(b));
old_x = x;
iter = 0;
while true
% 计算新的x值
temp = A \ b; % 使用MATLAB的除法运算符代替逐元素相除
x = temp + (x - old_x);
if diff < tolerance || iter == maxIter
break;
end
old_x = x;
iter = iter + 1;
end
end
```
使用此函数时,首先你需要提供系数矩阵`A`、右侧向量`b`,以及迭代的容忍度`tolerance`和最大迭代次数`maxIter`。返回的是最终的近似解`x`和实际执行的迭代次数`iter`。
jacobi迭代法matlab代码,迭代初值为0
以下是Jacobi迭代法的Matlab代码,初始迭代值为0:
```
function [x, iter] = jacobi(A, b, max_iter, tol)
% Jacobi迭代法求解线性方程组Ax=b
% A: 系数矩阵
% b: 常数向量
% max_iter: 最大迭代次数
% tol: 迭代精度
n = length(b);
x = zeros(n, 1); % 初始迭代值为0
iter = 0;
while iter < max_iter
iter = iter + 1;
x_old = x;
for i = 1:n
x(i) = (b(i) - A(i,1:i-1)*x_old(1:i-1) - A(i,i+1:n)*x_old(i+1:n)) / A(i,i);
end
if norm(x - x_old) < tol
break;
end
end
end
```
其中,A是系数矩阵,b是常数向量,max_iter是最大迭代次数,tol是迭代精度。函数返回x是方程组的解,iter是实际迭代次数。
阅读全文
相关推荐
















