jacobi迭代法c++
时间: 2023-06-18 10:07:23 浏览: 100
jacobi迭代法
Jacobi迭代法是一种求解线性方程组的方法,可以用于求解稀疏矩阵。下面是一个C++实现Jacobi迭代法的示例代码:
```c++
#include <iostream>
#include <cmath>
using namespace std;
const int MAXN = 100;
const double EPS = 1e-6;
double A[MAXN][MAXN], b[MAXN], x[MAXN];
int main()
{
int n;
cout << "请输入方程组的阶数n:";
cin >> n;
cout << "请输入方程组的系数矩阵A:" << endl;
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= n; ++j)
cin >> A[i][j];
cout << "请输入方程组的常数项b:" << endl;
for (int i = 1; i <= n; ++i)
cin >> b[i];
for (int i = 1; i <= n; ++i)
x[i] = b[i] / A[i][i];
int k = 0;
double norm = 0, lastNorm = 0;
do {
lastNorm = norm;
norm = 0;
for (int i = 1; i <= n; ++i) {
double tmp = 0;
for (int j = 1; j <= n; ++j) {
if (i == j) continue;
tmp += A[i][j] * x[j];
}
x[i] = (b[i] - tmp) / A[i][i];
norm += pow(x[i] - lastNorm, 2);
}
norm = sqrt(norm);
++k;
} while (norm > EPS);
cout << "方程组的解为:" << endl;
for (int i = 1; i <= n; ++i)
cout << "x" << i << " = " << x[i] << endl;
cout << "迭代次数为:" << k << endl;
return 0;
}
```
这里使用了一个do-while循环来进行迭代,直到满足精度要求。在每一次迭代中,根据Jacobi迭代公式,计算出所有的x[i],并计算出每个x[i]的变化量,用于判断是否满足精度要求。迭代次数k即为循环执行的次数。
需要注意的是,在使用Jacobi迭代法求解线性方程组时,需要保证矩阵A是对角占优的,否则可能会出现发散现象。
阅读全文