遗传算法select函数C实现
时间: 2024-06-12 19:10:46 浏览: 48
遗传算法的select函数是用来选择适应度高的个体,进入下一代的种群中。常见的select函数有轮盘赌选择、锦标赛选择、随机选择等。以下是一个简单的轮盘赌选择的C实现:
```c
void select(double *fitness, int pop_size, int *selected)
{
double sum_fitness = 0;
double *accum_fitness = (double *)malloc(sizeof(double) * pop_size);
accum_fitness[0] = fitness[0];
for (int i = 1; i < pop_size; i++) {
accum_fitness[i] = accum_fitness[i - 1] + fitness[i];
}
sum_fitness = accum_fitness[pop_size - 1];
for (int i = 0; i < pop_size; i++) {
double r = (double)rand() / RAND_MAX * sum_fitness;
int j;
for (j = 0; j < pop_size - 1; j++) {
if (r <= accum_fitness[j]) {
break;
}
}
selected[i] = j;
}
free(accum_fitness);
}
```
其中,fitness是每个个体的适应度值,pop_size是种群大小,selected是被选择的个体的下标数组。函数首先计算出所有个体适应度值之和sum_fitness,然后根据每个个体的适应度值计算出累积适应度值accum_fitness。接着,函数生成一个随机数r,根据r在累积适应度值数组中找到对应的个体下标,将其加入到selected数组中。最后,释放累积适应度值数组的内存。
阅读全文