client_data, client_label = load_subjects_data(args.csv_path, CLIENT_DATASET) 解释代码
时间: 2023-12-07 12:04:41 浏览: 150
这段代码是在加载主题数据集时使用的。它调用了一个名为 `load_subjects_data` 的函数,并传递了两个参数 `args.csv_path` 和 `CLIENT_DATASET`。函数返回两个值,分别是 `client_data` 和 `client_label`。
具体函数的实现可能在其他部分的代码中,我们无法直接看到。但可以猜测这个函数的作用是从一个指定的 CSV 文件中加载主题数据,并将数据分别存储在 `client_data` 和 `client_label` 中。
相关问题
if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--path', type=str, default=r"data/UCI HAR Dataset/UCI HAR Dataset", help='UCI dataset data path') parser.add_argument('--save', type=str, default='data/UCI_Smartphone_Raw.csv', help='save file name') args = parser.parse_args() data_path = args.path # read train subjects train_subjects = pd.read_csv(os.path.join(data_path, 'train/subject_train.txt'), header=None, names=['subject']) # read test subjects test_subjects = pd.read_csv(os.path.join(data_path, 'test/subject_test.txt'), header=None, names=['subject']) # concat subjects = pd.concat([train_subjects, test_subjects], axis=0) # read train labels train_labels = pd.read_csv(os.path.join(data_path, 'train/y_train.txt'), header=None, names=['label']) # read train labels test_labels = pd.read_csv(os.path.join(data_path, 'test/y_test.txt'), header=None, names=['label']) # labels labels = pd.concat([train_labels, test_labels], axis=0) final_dataframe = pd.concat([subjects, labels], axis=1) data = [] for name in COLUMNS: final_dataframe = pd.concat([final_dataframe, read_txt(name)], axis=1) final_dataframe.to_csv(args.save,index=False) 如何将文中txt文件改成mnist数据集数据,其他不做大修改
要将代码修改为使用MNIST数据集而不是txt文件,你需要进行以下修改:
1. 导入所需的库和模块:
```python
import numpy as np
import pandas as pd
from sklearn.datasets import fetch_openml
```
2. 加载MNIST数据集:
```python
mnist = fetch_openml('mnist_784', version=1, cache=True)
```
3. 将图像矩阵和标签分别存储为numpy数组:
```python
X = mnist.data
y = mnist.target
```
4. 创建一个包含所有数据的Pandas数据框:
```python
df = pd.DataFrame(X)
df['label'] = y
```
5. 将数据框保存为CSV文件:
```python
df.to_csv(args.save, index=False)
```
注意,这里我们使用了`args.save`作为保存文件名,这是根据你之前的代码中的`--save`命令行参数来决定的。
除了以上修改,你还需要删除以下代码块,因为MNIST数据集已经包含了图像数据和标签,不需要再读取其他文件:
```python
# read train subjects
train_subjects = pd.read_csv(os.path.join(data_path, 'train/subject_train.txt'), header=None, names=['subject'])
# read test subjects
test_subjects = pd.read_csv(os.path.join(data_path, 'test/subject_test.txt'), header=None, names=['subject'])
# concat
subjects = pd.concat([train_subjects, test_subjects], axis=0)
# read train labels
train_labels = pd.read_csv(os.path.join(data_path, 'train/y_train.txt'), header=None, names=['label'])
# read train labels
test_labels = pd.read_csv(os.path.join(data_path, 'test/y_test.txt'), header=None, names=['label'])
# labels
labels = pd.concat([train_labels, test_labels], axis=0)
final_dataframe = pd.concat([subjects, labels], axis=1)
data = []
for name in COLUMNS:
final_dataframe = pd.concat([final_dataframe, read_txt(name)], axis=1)
```
这些修改后的代码将直接将MNIST数据集转换为CSV文件,并保存到指定的路径中。
def load_data(self): data = [] labels = [] subjects = [] for subject in range(1, self.num_subjects+1): filename = self.file_prefix + str(subject) + 'T.mat' # filepath = os.path.join(self.data_path, filename) filepath =os.path.join( 'F:\SoftwaresProjectFiles\python\zhuangeshi_to_dgl\BCIcompetitionIV2a\dataset/',filename) filepath_y = os.path.join('F:\SoftwaresProjectFiles\python\zhuangeshi_to_dgl\BCIcompetitionIV2a\labels/',filename) mat_x = scipy.io.loadmat(filepath) mat_y=scipy.io.loadmat(filepath_y) x=mat_x['data'] y=mat_y['classlabel'] mat['data']=np.zeros(9,288) mat['data'][:-1]=x mat['data'][-1]=y eeg_data = mat['data'][:-1] event_data = mat['data'][-1] events = np.array([e for e in event_data[0] if e != 0]) labels.append(events - 1) subjects.append(np.ones(len(events)) * subject) data.append(eeg_data) data = np.concatenate(data, axis=0) labels = np.concatenate(labels, axis=0) subjects = np.concatenate(subjects, axis=0) return data, labels, subjects输出的shape
这段代码是一个用于加载BCI Competition IV 2a数据集的函数load_data。该函数返回一个三元组(data, labels, subjects),其中data是一个形状为(N, C, T)的NumPy数组,其中N表示样本数,C表示通道数,T表示时间步数;labels是一个形状为(N,)的NumPy数组,其中每个元素是一个标签;subjects是一个形状为(N,)的NumPy数组,其中每个元素是一个主题编号。
由于这段代码只给出了函数的实现,没有给出函数的调用,因此无法确定函数返回的data, labels, subjects的具体形状。但可以根据代码中的NumPy数组操作推测它们的形状。具体地,根据代码中的"labels.append(events - 1)"和"subjects.append(np.ones(len(events)) * subject)"语句,可以得知labels和subjects两个数组的长度是所有样本的事件总数。而根据代码中的"data.append(eeg_data)"语句,可以得知data数组的第一维长度是所有样本的数量,第二维长度是通道数,第三维长度是所有样本的时间步数的总和。
因此,该函数返回的data数组的形状为(N, C, T),其中N为样本数,C为通道数,T为时间步数的总和;labels数组的形状为(N,);subjects数组的形状为(N,)。
阅读全文