惩罚函数法matlab程序
时间: 2023-08-03 20:05:03 浏览: 127
惩罚函数法的matlab实现方法
4星 · 用户满意度95%
以下是一个简单的惩罚函数法的 Matlab 程序示例,用于求解一个非线性约束优化问题:
```matlab
function [x, fval] = penalty_method(f, c, x0, rho, tol)
% f: 目标函数
% c: 约束条件
% x0: 初始点
% rho: 惩罚函数系数
% tol: 迭代终止容差
x = x0;
fval = f(x);
while true
% 构造惩罚函数
p = @(x) f(x) + rho * sum(max(0, c(x)).^2);
% 求解无约束优化问题
[x, fval] = fminunc(p, x);
% 判断是否满足约束条件
if max(abs(c(x))) < tol
break;
end
% 更新惩罚函数系数
rho = rho * 10;
end
end
```
其中,惩罚函数定义为 $p(x) = f(x) + \rho \sum_{i=1}^m \max(0, c_i(x))^2$,其中 $m$ 是约束条件的数量,$\rho$ 是惩罚函数系数。在每次迭代中,我们求解无约束优化问题 $\min_{x} p(x)$,并判断是否满足约束条件。如果不满足,则增加惩罚函数系数 $\rho$ 并重新求解。当约束条件满足一定的容差 $\text{tol}$ 后,算法终止并返回最优解 $x$ 和目标函数值 $f(x)$。
阅读全文