vocab_size, vector_size = [int(x) for x in header.split()] # throws for invalid file format ValueError: invalid literal for int() with base 10: 'the'
时间: 2023-08-10 18:47:22 浏览: 154
根据您提供的信息,这个错误通常是由于读取的文件格式不正确导致的。在你的代码中,header变量可能是不正确的,因此无法将其正确解析为vocab_size和vector_size。请确保你正在读取正确格式的文件并正确解析header变量,以避免此错误。您可以检查文件的开头是否包含正确的格式信息,或者尝试使用不同的文件读取方法来读取文件。如果问题仍然存在,请提供更多细节,以便我更好地帮助您解决问题。
相关问题
class QABasedOnAttentionModel(nn.Module): def __init__(self, vocab_size, embed_size, hidden_size, topk): super(QABasedOnAttentionModel, self).__init__() self.topk = topk self.embedding = nn.Embedding(vocab_size, embed_size) self.encoder = nn.GRU(embed_size, hidden_size, batch_first=True) self.attention = nn.Linear(hidden_size, 1) self.decoder = nn.Linear(hidden_size, vocab_size) def forward(self, input_question, input_answer): question_embed = torch.nn.Parameter(self.embedding(input_question), requires_grad=True) answer_embed = torch.nn.Parameter(self.embedding(input_answer), requires_grad=True) _, question_hidden = self.encoder(question_embed) answer_outputs, _ = self.encoder(answer_embed, question_hidden) attention_weights = self.attention(answer_outputs).squeeze(dim=-1) attention_weights = torch.softmax(attention_weights, dim=1) context_vector = torch.bmm(attention_weights.unsqueeze(dim=1), answer_outputs).squeeze(dim=1) logits = self.decoder(context_vector) top_values, top_indices = torch.topk(logits.view(-1, vocab_size), k=self.topk, dim=1) return top_indices
这个代码片段展示了一个基于注意力机制的问答模型的前向传播过程。该模型使用GRU作为编码器,通过计算问题和答案的注意力权重来获取上下文向量,并将上下文向量输入到解码器中进行预测。
在这段代码中,`input_question`和`input_answer`是作为输入的整数序列,表示问题和答案的标记化数据。`vocab_size`是词汇表的大小,`embed_size`是嵌入层的维度,`hidden_size`是GRU隐藏状态的维度,`topk`是解码时保留的前k个最高概率的标记。
在前向传播过程中,首先将输入的问题和答案序列通过嵌入层进行词嵌入,然后将问题序列输入到GRU编码器中得到最后一个隐藏状态`question_hidden`。接着,将答案序列和问题最后隐藏状态作为初始隐藏状态输入到GRU编码器中,得到答案序列的输出`answer_outputs`。
然后,通过线性层`attention`计算注意力权重,对答案输出进行加权平均得到上下文向量`context_vector`。
最后,通过线性层`decoder`将上下文向量映射为预测的标记概率分布,并使用`torch.topk()`函数获取最高概率的前k个标记的索引。
如果您有关于这段代码的任何问题,请随时提问。
def load_bin_vec(fname, vocab): """ Loads 300x1 word vecs from Google (Mikolov) word2vec """ word_vecs = {} with open(fname, "rb") as f: header = f.readline() vocab_size, layer1_size = map(int, header.split()) binary_len = np.dtype('float32').itemsize * layer1_size for line in range(vocab_size): word = [] while True: ch = f.read(1).decode('latin-1') if ch == ' ': word = ''.join(word) break if ch != '\n': word.append(ch) if word in vocab: word_vecs[word] = np.fromstring(f.read(binary_len), dtype='float32') else: f.read(binary_len) return word_vecs 这段代码的含义
这段代码是用来从Google的word2vec文件中加载300维的词向量。它会读取文件头部的信息,包括词汇大小和每个词向量的维度。然后,它会遍历文件中的每一行,并将每个词和其对应的词向量存储在一个字典中。如果词在给定的词汇表中存在,则会将该词和其对应的词向量添加到字典中。最后,返回这个包含词和词向量的字典。
阅读全文