在这句代码中Uart1_Buffer[i++] = (USART_ReceiveData(USART1))&0xff; 假如i的初始值是0,那第一次运行的时候,i是多少
时间: 2024-04-08 14:31:08 浏览: 98
根据给出的代码片段:
```
Uart1_Buffer[i++] = (USART_ReceiveData(USART1))&0xff;
```
假设i的初始值是0,那么第一次运行时,i的值将是1。
在这行代码中,先执行了`USART_ReceiveData(USART1)`函数来获取USART1接收寄存器中的数据,然后使用位运算符`&`和掩码0xff将数据截取为8位,最后将截取后的数据存储到Uart1_Buffer数组中的索引位置i。然后,通过`i++`操作符来将i的值自增1。
因此,在第一次运行时,i的初始值为0,经过一次运行后,i的值将变为1。
相关问题
stm32f103c8t6串口2发送AT+LOCATION=1指令给EC01g,并解析GPS,显示到屏幕,stm32库函数版本的代码
下面是基于STM32 HAL库的串口2发送AT指令并解析GPS数据的代码,供参考:
```c
#include "stm32f1xx_hal.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define GPS_BUFFER_SIZE 256
UART_HandleTypeDef huart2;
char gps_buffer[GPS_BUFFER_SIZE];
int gps_buffer_index = 0;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART2_UART_Init(void);
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
if (huart->Instance == USART2)
{
if (gps_buffer_index < GPS_BUFFER_SIZE - 1)
{
gps_buffer[gps_buffer_index++] = huart->Instance->DR & 0xFF;
}
}
}
void clear_gps_buffer()
{
memset(gps_buffer, 0, GPS_BUFFER_SIZE);
gps_buffer_index = 0;
}
void send_at_command(char* command)
{
HAL_UART_Transmit(&huart2, (uint8_t*)command, strlen(command), HAL_MAX_DELAY);
}
void parse_gps_data(char* gps_data)
{
char* token = strtok(gps_data, ",");
int count = 0;
while (token != NULL)
{
if (count == 3) // latitude
{
float latitude = atof(token);
printf("Latitude: %f\n", latitude);
}
else if (count == 4) // north or south
{
if (strcmp(token, "S") == 0)
{
printf("Direction: South\n");
}
else
{
printf("Direction: North\n");
}
}
else if (count == 5) // longitude
{
float longitude = atof(token);
printf("Longitude: %f\n", longitude);
}
else if (count == 6) // east or west
{
if (strcmp(token, "W") == 0)
{
printf("Direction: West\n");
}
else
{
printf("Direction: East\n");
}
}
token = strtok(NULL, ",");
count++;
}
}
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_USART2_UART_Init();
while (1)
{
send_at_command("AT+LOCATION=1\r\n");
HAL_Delay(1000);
char* search_str = "+LOCATION:";
char* ptr = strstr(gps_buffer, search_str);
if (ptr != NULL)
{
ptr += strlen(search_str);
parse_gps_data(ptr);
}
clear_gps_buffer();
HAL_Delay(5000);
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
static void MX_USART2_UART_Init(void)
{
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
HAL_UART_Receive_IT(&huart2, (uint8_t*)gps_buffer, 1);
}
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13, GPIO_PIN_RESET);
/*Configure GPIO pin : PC13 */
GPIO_InitStruct.Pin = GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
}
```
需要注意的是,这只是一个简单的示例代码,无法保证完全正确和可靠,需要根据具体需求进行调整和修改。同时,还需要根据具体的硬件连接情况进行相应的配置。
使用stm32读取两个传感器的数据。传感器1:通过UART1发送FF 01 03 02 00 00 00 00 FB为关闭主动上报,发送:FF 01 03 03 02 00 00 00 F8,向传感器问询,传感器返回:XXX+%(ASCII码,数值+单位%),把返回的数值以float类型,保留四位小数保存。传感器2:通过UART2发送:11 01 01 ED读取O2 测量结果,返回结果为:16 09 01 DF1 DF2 DF3 DF4 DF5 DF6 DF7 DF8 [CS],数据处理方法为:O2 浓度值= (DF1*256 + DF2)/10 (Vol %),O2 流量值= (DF3*256 + DF4)/10 (L/min),O2 温度值= (DF5*256 + DF6)/10 (℃)。帮我写—段使用STM32F429,标准库读取这个传感器数值的代码
以下是使用STM32F429标准库读取传感器1和传感器2数值的代码:
```c
#include "stm32f4xx.h"
#include <stdio.h>
#include <string.h>
#define UART1_TX_PIN GPIO_Pin_9
#define UART1_RX_PIN GPIO_Pin_10
#define UART2_TX_PIN GPIO_Pin_5
#define UART2_RX_PIN GPIO_Pin_6
UART_HandleTypeDef UART1_Handle, UART2_Handle;
void MX_GPIO_Init(void);
void MX_USART1_UART_Init(void);
void MX_USART2_UART_Init(void);
void read_sensor1(void);
void read_sensor2(void);
int main(void) {
HAL_Init();
MX_GPIO_Init();
MX_USART1_UART_Init();
MX_USART2_UART_Init();
while (1) {
read_sensor1();
read_sensor2();
}
}
void read_sensor1(void) {
uint8_t txData[] = {0xFF, 0x01, 0x03, 0x03, 0x02, 0x00, 0x00, 0x00, 0xF8};
uint8_t rxData[100];
uint32_t timeout = 1000;
float value;
// Send command to sensor 1
HAL_UART_Transmit(&UART1_Handle, txData, sizeof(txData), timeout);
// Wait for response from sensor 1
HAL_UART_Receive(&UART1_Handle, rxData, sizeof(rxData), timeout);
// Extract value from response
char* start = strchr((char*)rxData, '%') + 1;
char* end = strchr(start, '%');
char valueStr[10];
strncpy(valueStr, start, end - start);
value = atof(valueStr);
// Print value
printf("Sensor 1 value: %.4f\n", value);
}
void read_sensor2(void) {
uint8_t txData[] = {0x11, 0x01, 0x01, 0xED};
uint8_t rxData[100];
uint32_t timeout = 1000;
float o2Concentration, o2FlowRate, o2Temperature;
// Send command to sensor 2
HAL_UART_Transmit(&UART2_Handle, txData, sizeof(txData), timeout);
// Wait for response from sensor 2
HAL_UART_Receive(&UART2_Handle, rxData, sizeof(rxData), timeout);
// Extract data from response
uint16_t df1 = (rxData[3] << 8) | rxData[4];
uint16_t df2 = (rxData[5] << 8) | rxData[6];
uint16_t df3 = (rxData[7] << 8) | rxData[8];
uint16_t df4 = (rxData[9] << 8) | rxData[10];
uint16_t df5 = (rxData[11] << 8) | rxData[12];
uint16_t df6 = (rxData[13] << 8) | rxData[14];
o2Concentration = ((float)(df1 * 256 + df2)) / 10.0;
o2FlowRate = ((float)(df3 * 256 + df4)) / 10.0;
o2Temperature = ((float)(df5 * 256 + df6)) / 10.0;
// Print data
printf("Sensor 2 O2 concentration: %.4f Vol %%\n", o2Concentration);
printf("Sensor 2 O2 flow rate: %.4f L/min\n", o2FlowRate);
printf("Sensor 2 O2 temperature: %.4f deg C\n", o2Temperature);
}
void MX_GPIO_Init(void) {
GPIO_InitTypeDef GPIO_InitStruct;
__GPIOA_CLK_ENABLE();
__GPIOB_CLK_ENABLE();
__GPIOC_CLK_ENABLE();
// UART1 GPIO configuration
GPIO_InitStruct.Pin = UART1_TX_PIN | UART1_RX_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF7_USART1;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
// UART2 GPIO configuration
GPIO_InitStruct.Pin = UART2_TX_PIN | UART2_RX_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF7_USART2;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
void MX_USART1_UART_Init(void) {
UART1_Handle.Instance = USART1;
UART1_Handle.Init.BaudRate = 9600;
UART1_Handle.Init.WordLength = UART_WORDLENGTH_8B;
UART1_Handle.Init.StopBits = UART_STOPBITS_1;
UART1_Handle.Init.Parity = UART_PARITY_NONE;
UART1_Handle.Init.Mode = UART_MODE_TX_RX;
UART1_Handle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
UART1_Handle.Init.OverSampling = UART_OVERSAMPLING_16;
HAL_UART_Init(&UART1_Handle);
}
void MX_USART2_UART_Init(void) {
UART2_Handle.Instance = USART2;
UART2_Handle.Init.BaudRate = 9600;
UART2_Handle.Init.WordLength = UART_WORDLENGTH_8B;
UART2_Handle.Init.StopBits = UART_STOPBITS_1;
UART2_Handle.Init.Parity = UART_PARITY_NONE;
UART2_Handle.Init.Mode = UART_MODE_TX_RX;
UART2_Handle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
UART2_Handle.Init.OverSampling = UART_OVERSAMPLING_16;
HAL_UART_Init(&UART2_Handle);
}
```
在主函数中,我们调用 `read_sensor1()` 和 `read_sensor2()` 函数分别读取传感器1和传感器2的数据。这两个函数分别使用 `HAL_UART_Transmit()` 和 `HAL_UART_Receive()` 函数来发送和接收数据。接收到数据后,我们需要对数据进行处理,提取出需要的数值并转换为 `float` 类型。最后我们使用 `printf()` 函数将数值打印出来。
需要注意的是,在初始化函数中我们需要配置每个UART的GPIO引脚。在本例中,我们使用了USART1和USART2,并且将它们的TX引脚连接到PB9和PA5,RX引脚连接到PB10和PA6。
阅读全文