YOLOv3中定义epoch函数中设置train 或者eval 的代码
时间: 2024-05-03 20:16:49 浏览: 155
在YOLOv3中,定义epoch函数的代码如下:
```python
def epoch(model, data_loader, optimizer=None):
if optimizer is not None:
model.train()
else:
model.eval()
# iterate over the dataset
for batch_idx, (data, target) in enumerate(data_loader):
# move data to device
data, target = data.to(device), target.to(device)
if optimizer is not None:
# zero the gradients
optimizer.zero_grad()
# forward pass
output = model(data)
# calculate loss
loss = yolo_loss(output, target)
if optimizer is not None:
# backward pass
loss.backward()
# update weights
optimizer.step()
# print progress
if batch_idx % log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(data_loader.dataset),
100. * batch_idx / len(data_loader), loss.item()))
```
在这个函数中,如果optimizer参数不为None,则模型被设置为“train”模式,否则模型被设置为“eval”模式。在“train”模式下,模型将进行前向传递、反向传递和权重更新,而在“eval”模式下,模型只进行前向传递,不进行反向传递或权重更新。
阅读全文