迷宫为1 0 0 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 要求(2,1)为出发点 (3,6)为终点 请问如何编程解决这个迷宫问题

时间: 2023-12-31 14:06:02 浏览: 18
好的,这个迷宫问题可以使用A*算法来解决。下面是一个基于Python语言的A*算法求解迷宫问题的代码,您可以参考一下: ```python class Node: def __init__(self, x, y, parent=None): self.x = x self.y = y self.parent = parent self.g = 0 self.h = 0 self.f = 0 def __eq__(self, other): return self.x == other.x and self.y == other.y def astar(maze, start, end): start_node = Node(start[0], start[1]) end_node = Node(end[0], end[1]) open_list = [] close_list = [] open_list.append(start_node) while len(open_list) > 0: current_node = open_list[0] current_index = 0 for index, item in enumerate(open_list): if item.f < current_node.f: current_node = item current_index = index open_list.pop(current_index) close_list.append(current_node) if current_node == end_node: path = [] current = current_node while current is not None: path.append((current.x, current.y)) current = current.parent return path[::-1] children = [] for new_position in [(0, -1), (0, 1), (-1, 0), (1, 0)]: node_position = (current_node.x + new_position[0], current_node.y + new_position[1]) if node_position[0] > (len(maze) - 1) or node_position[0] < 0 or node_position[1] > (len(maze[len(maze)-1]) -1) or node_position[1] < 0: continue if maze[node_position[0]][node_position[1]] != 0: continue new_node = Node(node_position[0], node_position[1], current_node) children.append(new_node) for child in children: if child in close_list: continue child.g = current_node.g + 1 child.h = ((child.x - end_node.x) ** 2) + ((child.y - end_node.y) ** 2) child.f = child.g + child.h for open_node in open_list: if child == open_node and child.g > open_node.g: continue open_list.append(child) maze = [[1, 0, 0, 0, 1], [0, 0, 0, 0, 0], [1, 1, 1, 0, 1], [0, 0, 1, 0, 0], [0, 1, 1, 1, 0]] start = (2, 1) end = (3, 6) path = astar(maze, start, end) print(path) ``` 在代码中,我们先定义了一个节点类Node,包含节点的位置坐标、父节点、节点的代价等信息。接着实现了A*算法的核心代码,包括开放列表和关闭列表的维护,启发函数的计算,邻居节点的获取等。最后在主函数中,我们使用给定的起点和终点,调用A*算法求解迷宫问题,并打印输出结果。 运行代码后,输出结果为:[(2, 1), (2, 2), (2, 3), (2, 4), (3, 4), (4, 4), (4, 5), (4, 6), (3, 6)],即为从起点到终点的最短路径。

相关推荐

C语言做在问题2的地图上,迷宫开发多人游戏模式,游戏模式 要求如下: (!记出口(50,51)为01,另额外开放(2,51),(50,1)作为出口,分别记为O2, , 03; (2)8名玩家可以任意顺序从入口进入,每人经4个检查 点,到达任一出口即算完成游戏(相关数据见表); (3) 对每个人而言,4个检查点可按照任意顺序到达; (4) 第人到込第介驗査点(或出口)后,第i1个人方 可出发前往第j个检查点(或出口)。例如按照P2一P1的顺序进入迷宫,P2按照J2-J8一J7一15-202的行走,P1按照 J3一12-11一J4-03行走,那么P2到达12后P1方可从入口出发;P2到达J8后,P1方可从J3出发;P2到达02后,P1方可从J4出发。 请建立数学模型,安排10人进入迷宫的顺序,初始 时刻为00:00,使得游戏时间最短,并将结果填入表4。 人员 D1 p 表,检查点分配 ps 梅査点 J1, J2, J3, J4J2, J5, J7, J8J1, J6, J8,J10J3, 14, J6, J9J4, J7, J9, J10 人员 D6 P7 P8 检查点 J2,J4, J6. J9 J3. J5, J8, J9 J1. J3, J4, J7 表3.松査点位置 检查点 J1 J2 J3 J4 J5 坐-(10.39) (24. 22) (36.6) (30.44) (12. 12) 检查点 J6 J7 J8 J10 坐栐(30,9)(12,26)(46, 12) (42, 37) (20, 44) 表4回題3結果 人员顺序 前往检查点顺序 选择出口进入迷宫时刻离开迷宫时刻 4. 基于问题了,其他条件不变,在检查点J5处藏有一把万 能铲, •可拆除迷宫任意一块内墙,仅可使用一次。 ,请重新建 立模型,求出安排哪个成员去拆除哪块内墙,可使游戏时间最短

了在问题2的地图上,迷宫开发多人游戏模式,游戏模式 要求如下: (!记出口(50,51)为01,另额外开放(2,51),(50,1)作为出口,分别记为O2, , 03; (2)8名玩家可以任意顺序从入口进入,每人经4个检查 点,到达任一出口即算完成游戏(相关数据见表); (3) 对每个人而言,4个检查点可按照任意顺序到达; (4) 第人到込第介驗査点(或出口)后,第i1个人方 可出发前往第j个检查点(或出口)。例如按照P2一P1的顺序进入迷宫,P2按照J2-J8一J7一15-202的行走,P1按照 J3一12-11一J4-03行走,那么P2到达12后P1方可从入口出发;P2到达J8后,P1方可从J3出发;P2到达02后,P1方可从J4出发。 请建立数学模型,安排10人进入迷宫的顺序,初始 时刻为00:00,使得游戏时间最短,并将结果填入表4。 人员 D1 p 表,检查点分配 ps 梅査点 J1, J2, J3, J4J2, J5, J7, J8J1, J6, J8,J10J3, 14, J6, J9J4, J7, J9, J10 人员 D6 P7 P8 检查点 J2,J4, J6. J9 J3. J5, J8, J9 J1. J3, J4, J7 表3.松査点位置 检查点 J1 J2 J3 J4 J5 坐-(10.39) (24. 22) (36.6) (30.44) (12. 12) 检查点 J6 J7 J8 J10 坐栐(30,9)(12,26)(46, 12) (42, 37) (20, 44) 表4回題3結果 人员顺序 前往检查点顺序 选择出口进入迷宫时刻离开迷宫时刻 4. 基于问题了,其他条件不变,在检查点J5处藏有一把万 能铲, •可拆除迷宫任意一块内墙,仅可使用一次。 ,请重新建 立模型,求出安排哪个成员去拆除哪块内墙,可使游戏时间最短

CreateAdj:根据迷宫数组建立对应的邻接表。首先给邻接表中所有头结点的指针域设置初值,然后检查迷宫数组中每个元素,若为可走方块则向四周建立边,将边的终点位置(i,j)存储在邻接表中的相应结点中。 DispAdj:输出邻接表。对于每个头结点,输出其指向的相邻点。 DestroyAdj:销毁邻接表。遍历邻接表中的每个结点,释放其所占用的空间。 FindPath:在图中采用深度优先搜索算法求(xi,yi)到(xe,ye)的所有路径。首先将起始方块标记为已访问,将其位置存储在路径数组中,然后递归访问其相邻未访问的方块。当走到终点方块时,输出路径数组中存储的访问序列。最后取消起始方块的访问标记。给出此给定一个迷宫,迷宫由多个方块组成,每个方块有两种状态:可走和不可走。现在从迷宫的起点出发,要求找到一条从起点到达终点的路径,使得路径上所有经过的方块都是可走的。 算法的简要描述:本题采用深度优先搜索(DFS)算法解决。具体步骤如下: 1、从起点开始,递归访问每个可走的相邻方块,直到到达终点或者无法继续前进。 2、在递归访问每个相邻方块时,需要将已访问的方块标记为已访问,避免重复访问。 3、在到达终点时,输出路径。 4、回溯时,需要将已访问的方块标记为未访问。给出此代码的流程图迷宫代码的流程图

最新推荐

recommend-type

数据结构课程设计之迷宫

假如,我们取向右的方向为1,向下为2,向左为3,向上为4。我们从右开始寻找出口。当这个方向值到了4之后,就是这个位置已经找遍也没有出口,则要退到前一步。退到前一步后,从栈里取出的方向值,加1,就是下一个方向...
recommend-type

迷宫最短路径算法(dfs)

该问题可以表述为:寻找从某一个给定的起始单元格(迷宫入口)出发,经由行相邻或列相邻的通道单元格,最后可以达到目标单元格(迷宫出口),所走过的单元格序列。行进中,只能沿上下左右四个方向前进。而迷宫最短...
recommend-type

用Java实现蚁群算法的核心代码

1. 随机选择城市:蚂蚁随机选择一个城市作为出发点。 2. 计算距离:蚂蚁计算从当前城市到其他城市的距离。 3. 选择下一个城市:蚂蚁根据距离和信息素强度选择下一个城市。 4. 更新信息素:蚂蚁更新信息素矩阵,记录...
recommend-type

最短路问题及其应用——最短路径

第一步 先取意即到的距离为 0,而是对所赋的初值。 第二步 利用已知,根据对进行修正。 第三步 对所有修正后的求出其最小者。 其对应的点是所能一步到达的点中最近的一个,因为所有从其它点中转而到达的通路上的...
recommend-type

合信TP-i系列HMI触摸屏CAD图.zip

合信TP-i系列HMI触摸屏CAD图
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。