追赶法解三对角矩阵Python实现
时间: 2023-06-29 09:16:33 浏览: 189
以下是用追赶法解三对角矩阵的 Python 代码:
```python
def tridiagonal_solver(A, B, C, R):
"""
Solve the tridiagonal system Ax = R using the Thomas algorithm
where A, B, and C are the diagonal and off-diagonal elements of a tridiagonal matrix
R is the right-hand side, and X is the solution vector
"""
n = len(R)
M = [0] * n # temporary storage
# Forward elimination
M[0] = B[0] / A[0]
for i in range(1, n-1):
M[i] = B[i] / (A[i] - M[i-1] * C[i-1])
# Back substitution
X = [0] * n
X[-1] = (R[-1] - C[-1] * X[-2]) / (A[-1] - C[-1] * M[-2])
for i in range(n-2, 0, -1):
X[i] = M[i] * X[i+1] + (R[i] - C[i] * X[i+1]) / A[i]
X[0] = (R[0] - C[0] * X[1]) / A[0]
return X
```
这个代码和 Fortran 版本非常相似,使用了同样的 Thomas 算法来解三对角线性方程组。在这个代码中,首先进行了前向消元,然后进行了回带代入,最终得到了方程组的解X。需要注意的是,在 Python 中,我们需要使用列表来代替数组,并且需要在函数定义中指定参数类型。
阅读全文