基于tensorflow搭建模型对自定义数据集进行图像分类并通过mmd损失做无监督迁移学习的领域对齐完整代码
时间: 2023-06-15 07:06:43 浏览: 118
以下是基于TensorFlow搭建模型对自定义数据集进行图像分类并通过MMD损失做无监督迁移学习的领域对齐的完整代码:
```
import os
import numpy as np
import tensorflow as tf
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
# 加载数据集
def load_dataset(dataset_path):
images = []
labels = []
for dirname in os.listdir(dataset_path):
label = int(dirname)
for filename in os.listdir(os.path.join(dataset_path, dirname)):
image_path = os.path.join(dataset_path, dirname, filename)
image = tf.io.read_file(image_path)
image = tf.image.decode_jpeg(image, channels=3)
image = tf.image.resize(image, (256, 256))
image = tf.cast(image, tf.float32) / 255.0
images.append(image)
labels.append(label)
images = tf.stack(images, axis=0)
labels = tf.constant(labels)
return images, labels
# 定义卷积神经网络模型
class CNNModel(tf.keras.Model):
def __init__(self):
super(CNNModel, self).__init__()
self.conv1 = tf.keras.layers.Conv2D(filters=32, kernel_size=(5, 5), activation='relu')
self.pool1 = tf.keras.layers.MaxPool2D(pool_size=(2, 2))
self.conv2 = tf.keras.layers.Conv2D(filters=64, kernel_size=(5, 5), activation='relu')
self.pool2 = tf.keras.layers.MaxPool2D(pool_size=(2, 2))
self.flatten = tf.keras.layers.Flatten()
self.dense1 = tf.keras.layers.Dense(units=1024, activation='relu')
self.dropout = tf.keras.layers.Dropout(rate=0.5)
self.dense2 = tf.keras.layers.Dense(units=10)
def call(self, inputs):
x = self.conv1(inputs)
x = self.pool1(x)
x = self.conv2(x)
x = self.pool2(x)
x = self.flatten(x)
x = self.dense1(x)
x = self.dropout(x)
x = self.dense2(x)
return x
# 定义MMD损失函数
def mmd_loss(source_features, target_features):
source_mean = tf.reduce_mean(source_features, axis=0)
target_mean = tf.reduce_mean(target_features, axis=0)
source_cov = tfp.stats.covariance(source_features, sample_axis=0, event_axis=-1)
target_cov = tfp.stats.covariance(target_features, sample_axis=0, event_axis=-1)
mmd = tf.reduce_sum(tf.square(source_mean - target_mean)) + tf.trace(source_cov + target_cov - 2 * tf.linalg.sqrtm(tf.matmul(source_cov, target_cov)))
return mmd
# 加载源域和目标域数据集
source_images, source_labels = load_dataset('source_dataset')
target_images, _ = load_dataset('target_dataset')
# 数据标准化
scaler = StandardScaler()
source_images = scaler.fit_transform(np.reshape(source_images, (source_images.shape[0], -1)))
target_images = scaler.transform(np.reshape(target_images, (target_images.shape[0], -1)))
# PCA降维
pca = PCA(n_components=256)
source_images = pca.fit_transform(source_images)
target_images = pca.transform(target_images)
# 构建模型
model = CNNModel()
# 定义优化器和损失函数
optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
cross_entropy_loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
# 训练模型
for epoch in range(10):
source_indices = tf.range(start=0, limit=source_images.shape[0], dtype=tf.int32)
target_indices = tf.range(start=0, limit=target_images.shape[0], dtype=tf.int32)
np.random.shuffle(source_indices)
np.random.shuffle(target_indices)
for i in range(0, source_images.shape[0], 32):
source_batch_indices = source_indices[i:i+32]
target_batch_indices = target_indices[i:i+32]
source_batch_images = source_images[source_batch_indices]
source_batch_labels = source_labels[source_batch_indices]
target_batch_images = target_images[target_batch_indices]
with tf.GradientTape() as tape:
source_batch_logits = model(source_batch_images)
source_batch_loss = cross_entropy_loss(source_batch_labels, source_batch_logits)
target_batch_features = model.layers[-3](target_batch_images)
source_batch_features = model.layers[-3](source_batch_images)
mmd = mmd_loss(source_batch_features, target_batch_features)
loss = source_batch_loss + mmd
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
print('Epoch: {}, Source Loss: {}, MMD Loss: {}'.format(epoch+1, source_batch_loss, mmd))
# 保存模型
model.save('model.h5')
```
阅读全文