ResNet50 Flatten层的作用
时间: 2023-07-24 09:05:13 浏览: 64
ResNet50模型中的Flatten层的作用是将最后一层卷积层输出的特征图(即具有深度的二维矩阵)展平成一维向量,以便于接下来的全连接层进行处理。也就是说,Flatten层将多个特征图中的所有特征点(或称为像素点)平铺成一个长向量,这个向量可以看作是该图像的特征向量,用于表示该图像的特征。这样可以将图像分类问题转化为一个常见的分类问题,即将高维的特征向量映射到类别标签上。
相关问题
resnet50最后flatten 层
ResNet50是一个深度神经网络模型,它的最后一层不是Flatten层,而是一个全局平均池化层(Global Average Pooling)。这个层的作用是将卷积核生成的特征图进行平均池化,将特征图转换为一个固定长度的向量,这个向量可以被输入到全连接层中进行分类或回归。这个全局平均池化层有利于减少模型的参数数量,防止过拟合,使得模型更加轻量化。因此,ResNet50的最后一层是一个全局平均池化层,而不是Flatten层。
ResNet50网络层设置
### 配置ResNet50神经网络各层参数及结构
#### 定义基本模块
构建ResNet50的核心在于定义卷积块和瓶颈块。这些基础组件构成了整个网络的主要部分。
对于标准的卷积块,通常会包含三个连续的卷积操作,其中第一个用于降采样:
```python
import torch.nn as nn
class ConvBlock(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1, downsample=None):
super(ConvBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
```
#### 构建整体架构
通过堆叠上述定义的基础模块来形成完整的ResNet50模型。这里需要注意的是,在不同阶段之间可能需要调整通道数或空间尺寸,这可以通过`downsample`参数实现。
```python
def make_layer(block, in_channels, channels, blocks, stride=1):
layers = []
# First block may need to adjust dimensions via downsampling.
downsample = None
if stride != 1 or in_channels != channels * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(in_channels, channels * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(channels * block.expansion))
layers.append(block(in_channels, channels, stride, downsample))
# Subsequent blocks do not change dimensionality.
for _ in range(1, blocks):
layers.append(block(channels * block.expansion, channels))
return nn.Sequential(*layers)
class ResNet50(nn.Module):
def __init__(self, num_classes=1000):
super().__init__()
self.in_channels = 64
# Initial convolutional layer before entering the main stages of ResNet50.
self.init_conv = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)
# Define four major stages with varying numbers of blocks and strides.
self.layer1 = make_layer(ConvBlock, 64, 64, 3, stride=1)
self.layer2 = make_layer(ConvBlock, 256, 128, 4, stride=2)
self.layer3 = make_layer(ConvBlock, 512, 256, 6, stride=2)
self.layer4 = make_layer(ConvBlock, 1024, 512, 3, stride=2)
# Final fully connected layer for classification task.
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(2048, num_classes)
def run(self, x):
x = self.init_conv(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
```
此代码片段展示了如何创建一个简单的PyTorch版本的ResNet50模型[^1]。注意这里的`ConvBlock`实现了所谓的“bottleneck”设计模式,它有助于减少计算量并提高效率。
阅读全文