Nesterov Accelerated Gradient Descent A variant of Stochastic Gradient Descent also considers the penultimate update to include more statistics for optimization: 𝜃̃ =𝜃+𝑣old⋅𝑚𝑡𝑚 𝑣=𝑣old⋅𝑚𝑡𝑚+𝜂⋅(−∂𝐿(𝜃̃ )∂𝜃) 𝜃=𝜃̃ Help me complete the following code based on the above question class NAGD(Optimizer): def __init__(self, params, lr=0.2, momentum=0.9) -> None: super().__init__(params, {'lr': lr, 'momentum': momentum}) self.lr = lr # maybe you need some more code here def step(self): with torch.no_grad(): for i, p in enumerate(self.param_groups[0]['params']): if p.grad is not None: # update parameters ...
时间: 2024-02-10 13:16:57 浏览: 95
Nesterov Accelerated Gradient Descent-Based Convolution Neural Network with Dropout for Facial Expression Recognition
Here is the completed code for Nesterov Accelerated Gradient Descent:
```
class NAGD(Optimizer):
def __init__(self, params, lr=0.2, momentum=0.9) -> None:
super().__init__(params, {'lr': lr, 'momentum': momentum})
self.lr = lr
self.momentum = momentum
self.v = {} # initialize velocity as an empty dictionary
for param in self.param_groups[0]['params']:
self.v[param] = torch.zeros_like(param.data) # initialize velocity for each parameter as a tensor of zeros
def step(self):
with torch.no_grad():
for i, p in enumerate(self.param_groups[0]['params']):
if p.grad is not None:
# update velocity
self.v[p] = self.momentum * self.v[p] + self.lr * (-p.grad)
# compute Nesterov update
p_nesterov = p.data - self.momentum * self.v[p]
# update parameters
p.data.copy_(p_nesterov)
```
In the above code, we initialize the velocity `self.v` for each parameter as a tensor of zeros in the constructor. Then, in the `step()` method, we first update the velocity using the gradient of the current parameter value. Next, we compute the Nesterov update by subtracting the momentum-scaled velocity from the current parameter value. Finally, we update the parameter with the Nesterov update.
阅读全文