dists[i,:]=np.sqrt(np.sum(np.square(self.X_train-X[i,:]),axis=1))
时间: 2023-06-27 10:03:09 浏览: 83
这段代码是用来计算测试数据与训练数据之间的欧式距离的。其中,self.X_train表示训练数据集,X表示测试数据集,dists是一个二维数组,表示每个测试数据点与所有训练数据点之间的距离。np.square是求平方的函数,np.sum是求和的函数,axis=1表示按行求和,np.sqrt是求平方根的函数,最终得到的结果就是一个二维数组,其中每个元素表示一个测试数据点与一个训练数据点之间的欧式距离。
相关问题
dists[i,j]=np.sqrt(np.sum(np.square(X[i,:]-self.X_train[j,:]))) dists[i,:]=np.sqrt(np.sum(np.square(self.X_train-X[i,:]),axis=1)) dists=np.sqrt(np.square(X).sum(1).reshape([-1,1])+np.square(self.X_train).sum(1).reshape([1,-1])-2*X.dot(self.X_train.T)) 这三行代码功能一样吗
是的,这三行代码的功能是相同的,都是用于计算输入数据矩阵 `X` 与训练数据矩阵 `self.X_train` 中每个数据之间的欧几里得距离,然后将距离存储在 `dists` 矩阵中。其中第一行代码使用了循环,第二行代码使用了向量化的方式进行计算,第三行代码则是在第二行代码的基础上进行了优化,使用了更快速的向量化计算方式。
class KNearestNeighbor(object): def __init__(self): pass def train(self, X, y): self.X_train = X self.y_train = y def predict(self, X, k=1): num_test = X.shape[0] num_train = self.X_train.shape[0] dists = np.zeros((num_test, num_train)) d1 = -2 * np.dot(X, self.X_train.T) d2 = np.sum(np.square(X), axis=1, keepdims=True) d3 = np.sum(np.square(self.X_train), axis=1) dist = np.sqrt(d1 + d2 + d3) y_pred = np.zeros(num_test) for i in range(num_test): dist_k_min = np.argsort(dist[i])[:k] y_kclose = self.y_train[dist_k_min] y_pred[i] = np.argmax(np.bincount(y_kclose.tolist())) return y_pred注释每一行代码
这是一个K最近邻分类器的Python实现,以下是每一行代码的注释:
```
class KNearestNeighbor(object):
def __init__(self):
pass
# 训练函数,输入训练数据X和对应的标签y
def train(self, X, y):
self.X_train = X
self.y_train = y
# 预测函数,输入测试数据X和参数k表示选择的最近邻数,默认为1
def predict(self, X, k=1):
num_test = X.shape[0] # 测试数据集的大小
num_train = self.X_train.shape[0] # 训练数据集的大小
dists = np.zeros((num_test, num_train)) # 创建一个距离矩阵,大小为(num_test, num_train)
# 计算测试数据集和训练数据集之间的距离
d1 = -2 * np.dot(X, self.X_train.T) # 先计算两个矩阵的乘积,再将结果乘以-2
d2 = np.sum(np.square(X), axis=1, keepdims=True) # 计算测试数据集中每个数据的平方和
d3 = np.sum(np.square(self.X_train), axis=1) # 计算训练数据集中每个数据的平方和
dist = np.sqrt(d1 + d2 + d3) # 计算欧几里得距离
y_pred = np.zeros(num_test) # 创建一个长度为num_test的数组,用于存储预测结果
# 针对每个测试数据,选出距离最近的k个训练数据,并进行分类
for i in range(num_test):
dist_k_min = np.argsort(dist[i])[:k] # 选出距离最近的k个训练数据
y_kclose = self.y_train[dist_k_min] # 获取这k个训练数据的标签
y_pred[i] = np.argmax(np.bincount(y_kclose.tolist())) # 对这k个训练数据的标签进行投票,选出最多的标签作为预测结果
return y_pred
```
阅读全文