NORM_DETACH
时间: 2024-04-26 14:19:20 浏览: 152
NORM_DETACH是一个用于计算矩阵的行列式的函数。它是OpenCV库中的一个函数,用于计算给定矩阵的行列式值。行列式是一个矩阵的一个标量值,它可以提供关于矩阵的一些重要信息,比如矩阵是否可逆、矩阵的秩等。
NORM_DETACH函数的使用方式如下:
```
double cv::determinant(const cv::Mat& mtx)
```
其中,参数`mtx`是一个输入矩阵,可以是任意大小和类型的矩阵。函数返回一个`double`类型的值,表示输入矩阵的行列式值。
需要注意的是,NORM_DETACH函数只能用于计算方阵的行列式,即行数和列数相等的矩阵。如果输入矩阵不是方阵,函数将会抛出异常或者返回一个无效值。
相关问题
x_norm = F.normalize(x, dim=1, p=p_norm).detach() w_norm = F.normalize(centroid, dim=1, p=p_norm) x_corr = F.conv2d(x_norm, w_norm,) 实现了什么功能
这段代码实现了对输入张量x进行归一化后,与给定的中心张量centroid进行相关操作。具体地,它使用了PyTorch中的F.normalize()函数对x和centroid在指定维度dim上进行p_norm范数归一化,并使用F.conv2d()函数在归一化后的x上进行卷积操作,从而得到相关结果x_corr。
详细解释一下这段代码,每一句都要进行注解:def get_global_desc(fnames, model, device = torch.device('cpu')): model = model.eval() model= model.to(device) config = resolve_data_config({}, model=model) transform = create_transform(**config) global_descs_convnext=[] for i, img_fname_full in tqdm(enumerate(fnames),total= len(fnames)): key = os.path.splitext(os.path.basename(img_fname_full))[0] img = Image.open(img_fname_full).convert('RGB') timg = transform(img).unsqueeze(0).to(device) with torch.no_grad(): desc = model.forward_features(timg.to(device)).mean(dim=(-1,2)) #.mean(dim=(-1,2)) 对提取的特征进行平均池化操作,将每张图片的特征转换成一个向量; #print (desc.shape) desc = desc.view(1, -1) #将向量转化成大小为 (1, 特征维度) 的矩阵; desc_norm = F.normalize(desc, dim=1, p=2) #对矩阵进行 L2 归一化,将向量长度归一化到 1; #print (desc_norm) global_descs_convnext.append(desc_norm.detach().cpu()) global_descs_all = torch.cat(global_descs_convnext, dim=0) # 将所有图片的特征向量拼接成一个矩阵 return global_descs_all
这段代码的作用是获取一组图片的全局特征描述符。
1. `def get_global_desc(fnames, model, device = torch.device('cpu')):`:定义了一个函数 `get_global_desc`,它有三个输入参数:`fnames` 表示图片文件名列表,`model` 表示使用的特征提取模型,`device` 表示运行模型的设备,默认为 CPU。
2. `model = model.eval()`:将模型设置为评估模式,这意味着不需要进行梯度计算,以加快模型运行速度。
3. `model= model.to(device)`:将模型移动到指定设备上进行运行。
4. `config = resolve_data_config({}, model=model)`:使用 `resolve_data_config` 函数获取模型的配置参数。
5. `transform = create_transform(**config)`:创建图像预处理变换,用于将输入图片转换为模型需要的格式。
6. `global_descs_convnext=[]`:初始化一个空列表,用于存储每张图片的全局特征描述符。
7. `for i, img_fname_full in tqdm(enumerate(fnames),total= len(fnames)):`
- 循环遍历每个图片文件名,同时使用 `tqdm` 函数显示进度条。
- `key = os.path.splitext(os.path.basename(img_fname_full))[0]`:从文件名中提取图片的关键字。
- `img = Image.open(img_fname_full).convert('RGB')`:打开图片文件,并将其转换为 RGB 格式。
- `timg = transform(img).unsqueeze(0).to(device)`:对图片进行预处理变换,并将其移动到指定设备上进行运行。
- `with torch.no_grad():`:进入无梯度计算的上下文。
- `desc = model.forward_features(timg.to(device)).mean(dim=(-1,2))`:使用模型提取图片的特征,并对特征进行平均池化操作,得到该图片的全局特征描述符。
- `desc = desc.view(1, -1)`:将描述符变换为大小为 `(1, 特征维度)` 的矩阵。
- `desc_norm = F.normalize(desc, dim=1, p=2)`:对矩阵进行 L2 归一化,将向量长度归一化到 1。
- `global_descs_convnext.append(desc_norm.detach().cpu())`:将该图片的全局特征描述符添加到列表 `global_descs_convnext` 中。
8. `global_descs_all = torch.cat(global_descs_convnext, dim=0)`:将所有图片的全局特征描述符拼接成一个矩阵。
9. `return global_descs_all`:返回所有图片的全局特征描述符矩阵。
阅读全文