NORM_DETACH

时间: 2024-04-26 12:19:20 浏览: 13
NORM_DETACH是一个用于计算矩阵的行列式的函数。它是OpenCV库中的一个函数,用于计算给定矩阵的行列式值。行列式是一个矩阵的一个标量值,它可以提供关于矩阵的一些重要信息,比如矩阵是否可逆、矩阵的秩等。 NORM_DETACH函数的使用方式如下: ``` double cv::determinant(const cv::Mat& mtx) ``` 其中,参数`mtx`是一个输入矩阵,可以是任意大小和类型的矩阵。函数返回一个`double`类型的值,表示输入矩阵的行列式值。 需要注意的是,NORM_DETACH函数只能用于计算方阵的行列式,即行数和列数相等的矩阵。如果输入矩阵不是方阵,函数将会抛出异常或者返回一个无效值。
相关问题

x_norm = F.normalize(x, dim=1, p=p_norm).detach() w_norm = F.normalize(centroid, dim=1, p=p_norm) x_corr = F.conv2d(x_norm, w_norm,) 实现了什么功能

这段代码实现了对输入张量x进行归一化后,与给定的中心张量centroid进行相关操作。具体地,它使用了PyTorch中的F.normalize()函数对x和centroid在指定维度dim上进行p_norm范数归一化,并使用F.conv2d()函数在归一化后的x上进行卷积操作,从而得到相关结果x_corr。

详细解释一下这段代码,每一句都要进行注解:def get_global_desc(fnames, model, device = torch.device('cpu')): model = model.eval() model= model.to(device) config = resolve_data_config({}, model=model) transform = create_transform(**config) global_descs_convnext=[] for i, img_fname_full in tqdm(enumerate(fnames),total= len(fnames)): key = os.path.splitext(os.path.basename(img_fname_full))[0] img = Image.open(img_fname_full).convert('RGB') timg = transform(img).unsqueeze(0).to(device) with torch.no_grad(): desc = model.forward_features(timg.to(device)).mean(dim=(-1,2)) #.mean(dim=(-1,2)) 对提取的特征进行平均池化操作,将每张图片的特征转换成一个向量; #print (desc.shape) desc = desc.view(1, -1) #将向量转化成大小为 (1, 特征维度) 的矩阵; desc_norm = F.normalize(desc, dim=1, p=2) #对矩阵进行 L2 归一化,将向量长度归一化到 1; #print (desc_norm) global_descs_convnext.append(desc_norm.detach().cpu()) global_descs_all = torch.cat(global_descs_convnext, dim=0) # 将所有图片的特征向量拼接成一个矩阵 return global_descs_all

这段代码的作用是获取一组图片的全局特征描述符。 1. `def get_global_desc(fnames, model, device = torch.device('cpu')):`:定义了一个函数 `get_global_desc`,它有三个输入参数:`fnames` 表示图片文件名列表,`model` 表示使用的特征提取模型,`device` 表示运行模型的设备,默认为 CPU。 2. `model = model.eval()`:将模型设置为评估模式,这意味着不需要进行梯度计算,以加快模型运行速度。 3. `model= model.to(device)`:将模型移动到指定设备上进行运行。 4. `config = resolve_data_config({}, model=model)`:使用 `resolve_data_config` 函数获取模型的配置参数。 5. `transform = create_transform(**config)`:创建图像预处理变换,用于将输入图片转换为模型需要的格式。 6. `global_descs_convnext=[]`:初始化一个空列表,用于存储每张图片的全局特征描述符。 7. `for i, img_fname_full in tqdm(enumerate(fnames),total= len(fnames)):` - 循环遍历每个图片文件名,同时使用 `tqdm` 函数显示进度条。 - `key = os.path.splitext(os.path.basename(img_fname_full))[0]`:从文件名中提取图片的关键字。 - `img = Image.open(img_fname_full).convert('RGB')`:打开图片文件,并将其转换为 RGB 格式。 - `timg = transform(img).unsqueeze(0).to(device)`:对图片进行预处理变换,并将其移动到指定设备上进行运行。 - `with torch.no_grad():`:进入无梯度计算的上下文。 - `desc = model.forward_features(timg.to(device)).mean(dim=(-1,2))`:使用模型提取图片的特征,并对特征进行平均池化操作,得到该图片的全局特征描述符。 - `desc = desc.view(1, -1)`:将描述符变换为大小为 `(1, 特征维度)` 的矩阵。 - `desc_norm = F.normalize(desc, dim=1, p=2)`:对矩阵进行 L2 归一化,将向量长度归一化到 1。 - `global_descs_convnext.append(desc_norm.detach().cpu())`:将该图片的全局特征描述符添加到列表 `global_descs_convnext` 中。 8. `global_descs_all = torch.cat(global_descs_convnext, dim=0)`:将所有图片的全局特征描述符拼接成一个矩阵。 9. `return global_descs_all`:返回所有图片的全局特征描述符矩阵。

相关推荐

import torch import torch.nn as nn import torch.optim as optim import numpy as np 定义基本循环神经网络模型 class RNNModel(nn.Module): def init(self, rnn_type, input_size, hidden_size, output_size, num_layers=1): super(RNNModel, self).init() self.rnn_type = rnn_type self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layers = num_layers self.encoder = nn.Embedding(input_size, hidden_size) if rnn_type == 'RNN': self.rnn = nn.RNN(hidden_size, hidden_size, num_layers) elif rnn_type == 'GRU': self.rnn = nn.GRU(hidden_size, hidden_size, num_layers) self.decoder = nn.Linear(hidden_size, output_size) def forward(self, input, hidden): input = self.encoder(input) output, hidden = self.rnn(input, hidden) output = output.view(-1, self.hidden_size) output = self.decoder(output) return output, hidden def init_hidden(self, batch_size): if self.rnn_type == 'RNN': return torch.zeros(self.num_layers, batch_size, self.hidden_size) elif self.rnn_type == 'GRU': return torch.zeros(self.num_layers, batch_size, self.hidden_size) 定义数据集 with open('汉语音节表.txt', encoding='utf-8') as f: chars = f.readline() chars = list(chars) idx_to_char = list(set(chars)) char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)]) corpus_indices = [char_to_idx[char] for char in chars] 定义超参数 input_size = len(idx_to_char) hidden_size = 256 output_size = len(idx_to_char) num_layers = 1 batch_size = 32 num_steps = 5 learning_rate = 0.01 num_epochs = 100 定义模型、损失函数和优化器 model = RNNModel('RNN', input_size, hidden_size, output_size, num_layers) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) 训练模型 for epoch in range(num_epochs): model.train() hidden = model.init_hidden(batch_size) loss = 0 for X, Y in data_iter_consecutive(corpus_indices, batch_size, num_steps): optimizer.zero_grad() hidden = hidden.detach() output, hidden = model(X, hidden) loss = criterion(output, Y.view(-1)) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() if epoch % 10 == 0: print(f"Epoch {epoch}, Loss: {loss.item()}")请正确缩进代码

def forward(self, l, ab, y, idx=None): K = int(self.params[0].item()) T = self.params[1].item() Z_l = self.params[2].item() Z_ab = self.params[3].item() momentum = self.params[4].item() batchSize = l.size(0) outputSize = self.memory_l.size(0) # the number of sample of memory bank inputSize = self.memory_l.size(1) # the feature dimensionality # score computation if idx is None: # 用 AliasMethod 为 batch 里的每个样本都采样 4096 个负样本的 idx idx = self.multinomial.draw(batchSize * (self.K + 1)).view(batchSize, -1) # sample positives and negatives idx.select(1, 0).copy_(y.data) # sample weight_l = torch.index_select(self.memory_l, 0, idx.view(-1)).detach() weight_l = weight_l.view(batchSize, K + 1, inputSize) out_ab = torch.bmm(weight_l, ab.view(batchSize, inputSize, 1)) # sample weight_ab = torch.index_select(self.memory_ab, 0, idx.view(-1)).detach() weight_ab = weight_ab.view(batchSize, K + 1, inputSize) out_l = torch.bmm(weight_ab, l.view(batchSize, inputSize, 1)) if self.use_softmax: out_ab = torch.div(out_ab, T) out_l = torch.div(out_l, T) out_l = out_l.contiguous() out_ab = out_ab.contiguous() else: out_ab = torch.exp(torch.div(out_ab, T)) out_l = torch.exp(torch.div(out_l, T)) # set Z_0 if haven't been set yet, # Z_0 is used as a constant approximation of Z, to scale the probs if Z_l < 0: self.params[2] = out_l.mean() * outputSize Z_l = self.params[2].clone().detach().item() print("normalization constant Z_l is set to {:.1f}".format(Z_l)) if Z_ab < 0: self.params[3] = out_ab.mean() * outputSize Z_ab = self.params[3].clone().detach().item() print("normalization constant Z_ab is set to {:.1f}".format(Z_ab)) # compute out_l, out_ab out_l = torch.div(out_l, Z_l).contiguous() out_ab = torch.div(out_ab, Z_ab).contiguous() # # update memory with torch.no_grad(): l_pos = torch.index_select(self.memory_l, 0, y.view(-1)) l_pos.mul_(momentum) l_pos.add_(torch.mul(l, 1 - momentum)) l_norm = l_pos.pow(2).sum(1, keepdim=True).pow(0.5) updated_l = l_pos.div(l_norm) self.memory_l.index_copy_(0, y, updated_l) ab_pos = torch.index_select(self.memory_ab, 0, y.view(-1)) ab_pos.mul_(momentum) ab_pos.add_(torch.mul(ab, 1 - momentum)) ab_norm = ab_pos.pow(2).sum(1, keepdim=True).pow(0.5) updated_ab = ab_pos.div(ab_norm) self.memory_ab.index_copy_(0, y, updated_ab) return out_l, out_ab

from transformers import pipeline, BertTokenizer, BertModel import numpy as np import torch import jieba tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertModel.from_pretrained('bert-base-chinese') ner_pipeline = pipeline('ner', model='bert-base-chinese') with open('output/weibo1.txt', 'r', encoding='utf-8') as f: data = f.readlines() def cosine_similarity(v1, v2): return np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2)) def get_word_embedding(word): input_ids = tokenizer.encode(word, add_special_tokens=True) inputs = torch.tensor([input_ids]) outputs = model(inputs)[0][0][1:-1] word_embedding = np.mean(outputs.detach().numpy(), axis=0) return word_embedding def get_privacy_word(seed_word, data): privacy_word_list = [] seed_words = jieba.lcut(seed_word) jieba.load_userdict('data/userdict.txt') for line in data: words = jieba.lcut(line.strip()) ner_results = ner_pipeline(''.join(words)) for seed_word in seed_words: seed_word_embedding = get_word_embedding(seed_word) for ner_result in ner_results: if ner_result['word'] == seed_word and ner_result['entity'] == 'O': continue if ner_result['entity'] != seed_word: continue word = ner_result['word'] if len(word) < 3: continue word_embedding = get_word_embedding(word) similarity = cosine_similarity(seed_word_embedding, word_embedding) print(similarity, word) if similarity >= 0.6: privacy_word_list.append(word) privacy_word_set = set(privacy_word_list) return privacy_word_set 上述代码运行之后,结果为空集合,哪里出问题了,帮我修改一下

def forward(self, data, org_edge_index): x = data.clone().detach() edge_index_sets = self.edge_index_sets device = data.device batch_num, node_num, all_feature = x.shape x = x.view(-1, all_feature).contiguous() gcn_outs = [] for i, edge_index in enumerate(edge_index_sets): edge_num = edge_index.shape[1] cache_edge_index = self.cache_edge_index_sets[i] if cache_edge_index is None or cache_edge_index.shape[1] != edge_num*batch_num: self.cache_edge_index_sets[i] = get_batch_edge_index(edge_index, batch_num, node_num).to(device) batch_edge_index = self.cache_edge_index_sets[i] all_embeddings = self.embedding(torch.arange(node_num).to(device)) weights_arr = all_embeddings.detach().clone() all_embeddings = all_embeddings.repeat(batch_num, 1) weights = weights_arr.view(node_num, -1) cos_ji_mat = torch.matmul(weights, weights.T) normed_mat = torch.matmul(weights.norm(dim=-1).view(-1,1), weights.norm(dim=-1).view(1,-1)) cos_ji_mat = cos_ji_mat / normed_mat dim = weights.shape[-1] topk_num = self.topk topk_indices_ji = torch.topk(cos_ji_mat, topk_num, dim=-1)[1] self.learned_graph = topk_indices_ji gated_i = torch.arange(0, node_num).T.unsqueeze(1).repeat(1, topk_num).flatten().to(device).unsqueeze(0) gated_j = topk_indices_ji.flatten().unsqueeze(0) gated_edge_index = torch.cat((gated_j, gated_i), dim=0) batch_gated_edge_index = get_batch_edge_index(gated_edge_index, batch_num, node_num).to(device) gcn_out = self.gnn_layers[i](x, batch_gated_edge_index, node_num=node_num*batch_num, embedding=all_embeddings) gcn_outs.append(gcn_out) x = torch.cat(gcn_outs, dim=1) x = x.view(batch_num, node_num, -1) indexes = torch.arange(0,node_num).to(device) out = torch.mul(x, self.embedding(indexes)) out = out.permute(0,2,1) out = F.relu(self.bn_outlayer_in(out)) out = out.permute(0,2,1) out = self.dp(out) out = self.out_layer(out) out = out.view(-1, node_num) return out

def calc_gradient_penalty(self, netD, real_data, fake_data): alpha = torch.rand(1, 1) alpha = alpha.expand(real_data.size()) alpha = alpha.cuda() interpolates = alpha * real_data + ((1 - alpha) * fake_data) interpolates = interpolates.cuda() interpolates = Variable(interpolates, requires_grad=True) disc_interpolates, s = netD.forward(interpolates) s = torch.autograd.Variable(torch.tensor(0.0), requires_grad=True).cuda() gradients1 = autograd.grad(outputs=disc_interpolates, inputs=interpolates, grad_outputs=torch.ones(disc_interpolates.size()).cuda(), create_graph=True, retain_graph=True, only_inputs=True, allow_unused=True)[0] gradients2 = autograd.grad(outputs=s, inputs=interpolates, grad_outputs=torch.ones(s.size()).cuda(), create_graph=True, retain_graph=True, only_inputs=True, allow_unused=True)[0] if gradients2 is None: return None gradient_penalty = (((gradients1.norm(2, dim=1) - 1) ** 2).mean() * self.LAMBDA) + \ (((gradients2.norm(2, dim=1) - 1) ** 2).mean() * self.LAMBDA) return gradient_penalty def get_loss(self, net,fakeB, realB): self.D_fake, x = net.forward(fakeB.detach()) self.D_fake = self.D_fake.mean() self.D_fake = (self.D_fake + x).mean() # Real self.D_real, x = net.forward(realB) self.D_real = (self.D_real+x).mean() # Combined loss self.loss_D = self.D_fake - self.D_real gradient_penalty = self.calc_gradient_penalty(net, realB.data, fakeB.data) return self.loss_D + gradient_penalty,return self.loss_D + gradient_penalty出现错误:TypeError: unsupported operand type(s) for +: 'Tensor' and 'NoneType'

请帮我评估一下,我一共有9000行训练数据,代码如下:def get_data(train_df): train_df = train_df[['user_id', 'behavior_type']] train_df=pd.pivot_table(train_df,index=['user_id'],columns=['behavior_type'],aggfunc={'behavior_type':'count'}) train_df.fillna(0,inplace=True) train_df=train_df.reset_index(drop=True) train_df.columns=train_df.columns.droplevel(0) x_train=train_df.iloc[:,:3] y_train=train_df.iloc[:,-1] type=torch.float32 x_train=torch.tensor(x_train.values,dtype=type) y_train=torch.tensor(y_train.values,dtype=type) print(x_train) print(y_train) return x_train ,y_train x_train,y_train=get_data(train_df) x_test,y_test=get_data(test_df) print(x_test) #创建模型 class Order_pre(nn.Module): def __init__(self): super(Order_pre, self).__init__() self.ln1=nn.LayerNorm(3) self.fc1=nn.Linear(3,6) self.fc2 = nn.Linear(6, 12) self.fc3 = nn.Linear(12, 24) self.fc4 = nn.Linear(24, 1) def forward(self,x): x=self.ln1(x) x=self.fc1(x) x = nn.functional.relu(x) x = self.fc2(x) x = nn.functional.relu(x) x = self.fc3(x) x = nn.functional.relu(x) x = self.fc4(x) return x #定义模型、损失函数和优化器 model=Order_pre() loss_fn=nn.MSELoss() optimizer=torch.optim.SGD(model.parameters(),lr=1) #开始跑数据 for epoch in range(1,50): #预测值 y_pred=model(x_train) #损失值 loss=loss_fn(y_pred,y_train) #反向传播 optimizer.zero_grad() loss.backward() optimizer.step() print('epoch',epoch,'loss',loss) # 开始预测y值 y_test_pred=model(x_test) y_test_pred=y_test_pred.detach().numpy() y_test=y_test.detach().numpy() y_test_pred=pd.DataFrame(y_test_pred) y_test=pd.DataFrame(y_test) dfy=pd.concat([y_test,y_test_pred],axis=1) print(dfy) dfy.to_csv('resulty.csv')

def get_data(train_df): train_df = train_df[['user_id', 'behavior_type']] train_df=pd.pivot_table(train_df,index=['user_id'],columns=['behavior_type'],aggfunc={'behavior_type':'count'}) train_df.fillna(0,inplace=True) train_df=train_df.reset_index(drop=True) train_df.columns=train_df.columns.droplevel(0) x_train=train_df.iloc[:,:3] y_train=train_df.iloc[:,-1] type=torch.float32 x_train=torch.tensor(x_train.values,dtype=type) y_train=torch.tensor(y_train.values,dtype=type) print(x_train) print(y_train) return x_train ,y_train x_train,y_train=get_data(train_df) x_test,y_test=get_data(test_df) print(x_test) #创建模型 class Order_pre(nn.Module): def __init__(self): super(Order_pre, self).__init__() self.ln1=nn.LayerNorm(3) self.fc1=nn.Linear(3,6) self.fc2 = nn.Linear(6, 12) self.fc3 = nn.Linear(12, 24) self.dropout=nn.Dropout(0.5) self.fc4 = nn.Linear(24, 48) self.fc5 = nn.Linear(48, 96) self.fc6 = nn.Linear(96, 1) def forward(self,x): x=self.ln1(x) x=self.fc1(x) x = nn.functional.relu(x) x = self.fc2(x) x = nn.functional.relu(x) x = self.fc3(x) x = self.dropout(x) x = nn.functional.relu(x) x = self.fc4(x) x = nn.functional.relu(x) x = self.fc5(x) x = nn.functional.relu(x) x = self.fc6(x) return x #定义模型、损失函数和优化器 model=Order_pre() loss_fn=nn.MSELoss() optimizer=torch.optim.SGD(model.parameters(),lr=0.05) #开始跑数据 for epoch in range(1,50): #预测值 y_pred=model(x_train) #损失值 loss=loss_fn(y_pred,y_train) #反向传播 optimizer.zero_grad() loss.backward() optimizer.step() print('epoch',epoch,'loss',loss) # 开始预测y值 y_test_pred=model(x_test) y_test_pred=y_test_pred.detach().numpy() y_test=y_test.detach().numpy() y_test_pred=pd.DataFrame(y_test_pred) y_test=pd.DataFrame(y_test) dfy=pd.concat([y_test,y_test_pred],axis=1) print(dfy) dfy.to_csv('resulty.csv') 如果我想要使用学习率调度器应该怎么操作

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

已知自动控制原理中通过更高的频率特征来评估切割频率和库存——相位稳定。确定封闭系统的稳定性。求Wcp 和ψ已知W(p)=30•(0.1p+1)•(12.5p+1)/p•(10p+1)•(0.2p+1)•(p+1)

根据相位稳定的定义,我们需要找到一个频率 Wcp,使得相位满足 -ψ = -180°,即 ψ = 180°。此时系统的相位裕度为 0°,系统处于边缘稳定状态。 首先,我们需要将 W(p) 表示成极点和零点的形式。将分母和分子分别因式分解,得到: W(p) = 30 • (0.1p+1) • (12.5p+1) / [p • (10p+1) • (0.2p+1) • (p+1)] = 375p/(p+1) - 3750/(10p+1) + 750p/(0.2p+1) - 3750p/(10p+1) + 150p/(p+1) + 30 因此,系统的极点为 -1、-0.1、-0.2、
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩