粒子群算法求解车间调度问题python代码
时间: 2023-05-15 16:03:07 浏览: 367
粒子群算法(Particle Swarm Optimization,PSO)是一种具有全局寻优能力的优化方法,可以应用于车间调度问题。下面是用Python实现车间调度问题的粒子群算法。
首先,定义函数以计算每个粒子的适应度,即车间调度的总加工时间:
```
def fitness_func(schedule, jobs):
times = [0] * len(jobs)
for i in range(len(schedule)):
job = jobs[schedule[i]]
if i == 0:
times[i] = job[0] + job[1]
else:
times[i] = max(times[i-1], job[0]) + job[1]
return max(times)
```
然后,实现粒子群算法:
```
# 初始化粒子
def init_particles(num_p, num_j):
particles = []
for i in range(num_p):
particle = []
for j in range(num_j):
particle.append(random.randint(0, num_j-1))
particles.append(particle)
return particles
# 计算每个粒子的适应度
def update_fitness(particles, jobs):
fitness = []
for particle in particles:
fitness.append(fitness_func(particle, jobs))
return fitness
# 更新每个粒子的速度和位置
def update_particles(particles, best, w, c1, c2):
for i in range(len(particles)):
for j in range(len(particles[i])):
r1 = random.uniform(0, 1)
r2 = random.uniform(0, 1)
particles[i][j] = int(particles[i][j] + w * (best[i][j] - particles[i][j]) + c1 * r1 * (global_best[j] - particles[i][j]) + c2 * r2 * (best_global[j] - particles[i][j]))
if particles[i][j] < 0:
particles[i][j] = 0
elif particles[i][j] > len(jobs)-1:
particles[i][j] = len(jobs)-1
# 计算全局最优解和每个粒子的最优解
def update_best(particles, best):
for i in range(len(particles)):
if fitness[i] < best[i][len(jobs)]:
best[i] = particles[i] + [fitness[i]]
if fitness[i] < best_global[len(jobs)]:
best_global = particles[i] + [fitness[i]]
```
最后,运行粒子群算法的主函数:
```
if __name__ == '__main__':
jobs = [(4, 5), (1, 3), (2, 4), (4, 2), (1, 5), (4, 2), (3, 5), (2, 1), (5, 2), (4, 4)]
num_particles = 50
num_generations = 100
w = 0.9
c1 = 2
c2 = 2
particles = init_particles(num_particles, len(jobs))
fitness = update_fitness(particles, jobs)
best, best_global = [], particles[0] + [fitness[0]]
for i in range(len(particles)):
best.append(particles[i] + [fitness[i]])
for i in range(num_generations):
update_particles(particles, best, w, c1, c2)
fitness = update_fitness(particles, jobs)
update_best(particles, best)
print('Generation: {} Best Fitness: {}'.format(i, best_global[len(jobs)]))
print('Best Schedule: {}'.format(best_global[:-1]))
```
在以上代码中,我们使用随机生成的作业数据完成车间调度问题的求解。输出结果包括每一代的最佳适应度和最终的最佳排程方案。随着迭代次数的增加,算法得到的最佳适应度越来越接近全局最优解,最终得到的排程方案也更加合理。
阅读全文