import random# 生成随机坐标x = random.randint(0, 100)y = random.randint(0, 100)print("随机坐标为:({}, {})".format(x, y))
时间: 2023-05-18 16:06:29 浏览: 138
import random是Python中的一个模块,用于生成随机数和随机序列。可以通过该模块中的函数来实现随机数的生成,如random.random()、random.randint()等。同时,该模块还提供了一些其他的功能,如打乱序列、从序列中随机选择元素等。
相关问题
def En(image): x, y,_ = image.shape # 获取图片大小 radius = np.random.randint(10, int(min(x, y)), 1) # pos_x = np.random.randint(0, (min(x, y) - radius), 1) # 获取人脸光照区域的中心点坐标 pos_y = np.random.randint(0, (min(x, y) - radius), 1) # 获取人脸光照区域的中心坐标 pos_x = int(pos_x[0]) pos_y = int(pos_y[0]) radius = int(radius[0]) strength = 100 for j in range(pos_y - radius, pos_y + radius): for i in range(pos_x-radius, pos_x+radius): distance = math.pow((pos_x - i), 2) + math.pow((pos_y - j), 2) distance = np.sqrt(distance) if distance < radius: result = 1 - distance / radius result = result*strength # print(result) image[i, j, 0] = min((image[i, j, 0] + result),255) image[i, j, 1] = min((image[i, j, 1] + result),255) image[i, j, 2] = min((image[i, j, 2] + result),255) image = image.astype(np.uint8) return image对此函数进行文件夹内部图像处理
您可以使用以下代码对文件夹内的所有图像进行处理:
```python
import os
import cv2
import numpy as np
import math
def En(image):
x, y,_ = image.shape
radius = np.random.randint(10, int(min(x, y)), 1)
pos_x = np.random.randint(0, (min(x, y) - radius), 1)
pos_y = np.random.randint(0, (min(x, y) - radius), 1)
pos_x = int(pos_x[0])
pos_y = int(pos_y[0])
radius = int(radius[0])
strength = 100
for j in range(pos_y - radius, pos_y + radius):
for i in range(pos_x-radius, pos_x+radius):
distance = math.pow((pos_x - i), 2) + math.pow((pos_y - j), 2)
distance = np.sqrt(distance)
if distance < radius:
result = 1 - distance / radius
result = result*strength
image[i, j, 0] = min((image[i, j, 0] + result),255)
image[i, j, 1] = min((image[i, j, 1] + result),255)
image[i, j, 2] = min((image[i, j, 2] + result),255)
image = image.astype(np.uint8)
return image
img_folder_path = "YOUR_FOLDER_PATH" # 修改为你的文件夹路径
for filename in os.listdir(img_folder_path):
if filename.endswith(".jpg") or filename.endswith(".png"): # 处理jpg和png格式的图像
img_path = os.path.join(img_folder_path, filename)
img = cv2.imread(img_path)
img_en = En(img)
cv2.imwrite(img_path, img_en)
```
该代码会遍历指定文件夹内的所有图像,对每一张图像都进行处理并保存。您只需要将 `YOUR_FOLDER_PATH` 修改为您的文件夹路径即可。
image=np.array(grayImage,dtype=float) percent=0.001 num=int(percent*image.shape[0]*image.shape[1]) for i in range(num): temp1=np.random.randint(image.shape[0]) temp2=np.random.randint(image.shape[1]) scale=150 noise=np.random.poisson(scale,1) image[temp1][temp2]+=noise out=image if out.min()<0: low_clip=-1. else: low_clip=0. out=np.clip(out,low_clip,255) expon_image=np.uint8(out) print(expon_image.shape) cv2.imshow("expon_image",expon_image) k=cv2.waitKey(0)优化这段代码的for循环
可以使用numpy的随机函数生成随机的坐标,然后使用numpy的切片和花式索引方式对图像进行操作,可以避免使用循环。
以下是优化后的代码:
```python
import numpy as np
import cv2
grayImage = cv2.imread('test.jpg', 0)
# 转换为浮点型
image = grayImage.astype(float)
percent = 0.001
num = int(percent * image.shape[0] * image.shape[1])
# 生成随机坐标
rand_x = np.random.randint(0, image.shape[0], num)
rand_y = np.random.randint(0, image.shape[1], num)
scale = 150
noise = np.random.poisson(scale, num)
# 对图像进行操作
image[rand_x, rand_y] += noise
# 调整像素值范围
out = np.clip(image, 0, 255)
# 转换为8位整型
expon_image = out.astype(np.uint8)
print(expon_image.shape)
cv2.imshow("expon_image", expon_image)
k = cv2.waitKey(0)
```
使用numpy的切片和花式索引方式,可以避免使用循环,提高代码的效率。同时,也需要注意对图像进行操作时,需要保证图像的类型一致,避免出现类型错误的问题。
阅读全文