def _make_grid(nx=20, ny=20): yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
时间: 2023-05-22 22:04:32 浏览: 182
这个函数是用来生成一个2D网格的,nx和ny分别代表网格的宽度和高度。使用torch.meshgrid生成二维网格后,再用torch.stack将其合并成一个张量。最后返回一个大小为(1, 1, ny, nx, 2)的张量。
相关问题
class Detect(nn.Module): stride = None # strides computed during build onnx_dynamic = False # ONNX export parameter def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer super().__init__() self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor self.nl = len(anchors) # number of detection layers self.na = len(anchors[0]) // 2 # number of anchors self.grid = [torch.zeros(1)] * self.nl # init grid a = torch.tensor(anchors).float().view(self.nl, -1, 2) self.register_buffer('anchors', a) # shape(nl,na,2) self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2) self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv self.inplace = inplace # use in-place ops (e.g. slice assignment) def forward(self, x): z = [] # inference output for i in range(self.nl): x[i] = self.m[i](x[i]) # conv bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() if not self.training: # inference if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic: self.grid[i] = self._make_grid(nx, ny).to(x[i].device) y = x[i].sigmoid() if self.inplace: y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953 xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i].view(1, self.na, 1, 1, 2) # wh y = torch.cat((xy, wh, y[..., 4:]), -1) z.append(y.view(bs, -1, self.no)) return x if self.training else (torch.cat(z, 1), x) @staticmethod def _make_grid(nx=20, ny=20): yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
这是一个 PyTorch 中的 Detect 模块的定义。它是 YOLOv5 模型的核心组成部分之一,用于检测图像中的目标,并输出相应的边界框、置信度和类别信息。
具体来说,这个模块包含以下几个主要组成部分:
1. 初始化函数:定义了模块的一些基本参数,如目标的类别数、锚框的数量、输出通道数等。
2. 前向传播函数:接收输入张量 x,经过一系列卷积操作后,输出检测结果。其中,这个函数包含以下几个主要步骤:
a. 对于每个 detection 层,将输入张量 x 经过一个 1x1 的卷积层,得到输出张量;
b. 将输出张量的形状转换为 (batch_size, num_anchors, num_outputs, H, W) 的形式;
c. 对于每个锚框,计算其对应的边界框的位置和置信度等信息;
d. 将不同 detection 层的检测结果拼接起来,得到最终的检测结果。
3. 辅助函数 _make_grid:用于生成网格坐标,用于计算锚框的位置信息。
总的来说,这个 Detect 模块实现了 YOLOv5 检测算法的核心逻辑,是 YOLOv5 模型的重要组成部分之一。
def decode_outputs(self, outputs, dtype): grids = [] strides = [] for (hsize, wsize), stride in zip(self.hw, self.strides): yv, xv = torch.meshgrid([torch.arange(hsize), torch.arange(wsize)]) grid = torch.stack((xv, yv), 2).view(1, -1, 2) grids.append(grid) shape = grid.shape[:2] strides.append(torch.full((*shape, 1), stride)) grids = torch.cat(grids, dim=1).type(dtype) strides = torch.cat(strides, dim=1).type(dtype) outputs[..., :2] = (outputs[..., :2] + grids) * strides outputs[..., 2:4] = torch.exp(outputs[..., 2:4]) * strides return outputs 在GPU环境进行速度优化 并提供代码示例
以下是一个使用CUDA并行计算的示例代码:
```python
import torch
class Decoder:
def __init__(self, hw, strides):
self.hw = hw
self.strides = strides
def decode_outputs(self, outputs, dtype):
grids = []
strides = []
for (hsize, wsize), stride in zip(self.hw, self.strides):
yv, xv = torch.meshgrid([torch.arange(hsize), torch.arange(wsize)])
grid = torch.stack((xv, yv), 2).view(1, -1, 2)
grids.append(grid)
shape = grid.shape[:2]
strides.append(torch.full((*shape, 1), stride))
grids = torch.cat(grids, dim=1).type(dtype).cuda()
strides = torch.cat(strides, dim=1).type(dtype).cuda()
outputs = outputs.cuda()
outputs[..., :2] = (outputs[..., :2] + grids) * strides
outputs[..., 2:4] = torch.exp(outputs[..., 2:4]) * strides
return outputs.cpu()
```
这段代码与之前的代码基本相同,只是在计算 grids 和 strides 时,将其转换为 CUDA 张量,并使用 GPU 进行计算。同时将模型输出 outputs 也转换为 CUDA 张量,并在计算后将其转换回 CPU 张量。这样可以在 GPU 环境下采用并行思维进行速度优化,提高代码的执行效率。
阅读全文