设P=[-1:0.1:1];T=[-0.96,-0.577,-0.0729,0.377,0.641,0.66,0.461,0.1336,-0.201,-0.434,-0.5,-0.393,-0.1647,0.0988,0.3072,0.396,0.3449,0.1816,-0.0312,-0.2183,-0.3201].试用Matlab编程同时设计和实现分别包含6~12个隐单元的三层前馈BP神经网络,并通过计算误差,确定选择哪种隐单元个数的网络可得到相对最好的BP网络。
时间: 2023-09-11 22:12:15 浏览: 87
polkit-0.96-11.el6_10.1.x86_64.rpm
好的,我会根据您的要求进行回答。针对您的问题,可以参考以下的Matlab代码实现:
```matlab
% 数据准备
P = [-1:0.1:1];
T = [-0.96,-0.577,-0.0729,0.377,0.641,0.66,0.461,0.1336,-0.201,-0.434,-0.5,-0.393,-0.1647,0.0988,0.3072,0.396,0.3449,0.1816,-0.0312,-0.2183,-0.3201];
% 网络训练和测试
hiddenLayerSizes = 6:12;
errors = zeros(size(hiddenLayerSizes));
for i = 1:length(hiddenLayerSizes)
hiddenLayerSize = hiddenLayerSizes(i);
net = fitnet(hiddenLayerSize);
net = train(net, P, T);
Y = net(P);
errors(i) = perform(net, T, Y);
end
% 可视化误差结果
plot(hiddenLayerSizes, errors, '-o');
xlabel('Number of hidden units');
ylabel('Error');
title('Performance of BP network for different numbers of hidden units');
```
代码中使用了`fitnet`函数创建了一个三层前馈BP神经网络,`hiddenLayerSizes`定义了隐层单元数的范围,并在循环中依次训练和测试了不同隐层单元数的网络,并计算了每个网络的误差。最后使用`plot`函数将不同隐层单元数的误差进行可视化。
您可以根据可视化结果,选择误差最小的隐层单元数作为最终的BP网络模型。
阅读全文