定义ResNet18模型
时间: 2023-12-02 16:02:56 浏览: 69
ResNet18是一种深度卷积神经网络模型,用于图像分类任务。它由18个层组成,其中包含残差块(Residual Block),这是ResNet模型的核心。残差块允许该模型在不增加参数数量的情况下增加深度,同时避免了梯度弥散问题。ResNet18的输入是一张尺寸为224x224的RGB图像,输出是1000个类别的概率分布。该模型在ImageNet数据集上进行了训练,并在分类任务上取得了优异的性能。
相关问题
定义ResNet18模型 class ResNet18(nn.Module): def init(self): super(ResNet18, self).init() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.layer1 = nn.Sequential( nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(64) ) self.layer2 = nn.Sequential( nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(128), ) self.layer3 = nn.Sequential( nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(256), ) self.layer4 = nn.Sequential( nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(512), ) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512, 10) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.layer1(x) + x x = self.layer2(x) + x x = self.layer3(x) + x x = self.layer4(x) + x x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x
这段代码定义了一个名为 ResNet18 的模型,它是一个继承自 nn.Module 的子类。让我逐行解读这些代码:
```python
class ResNet18(nn.Module):
def __init__(self):
super(ResNet18, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.layer1 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64)
)
self.layer2 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(128),
)
self.layer3 = nn.Sequential(
nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(256),
)
self.layer4 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(512),
)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, 10)
```
- `ResNet18(nn.Module)`:定义了一个名为 ResNet18 的类,它继承自 nn.Module。
- `def __init__(self):`:定义类的初始化方法。
- `super(ResNet18, self).__init__()`:调用父类的初始化方法,确保父类的属性被正确初始化。
- `self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)`:定义了一个卷积层,输入通道数为3(RGB图像),输出通道数为64,卷积核大小为3x3,步长为1,填充为1,不使用偏置。
- `self.bn1 = nn.BatchNorm2d(64)`:定义了一个批归一化层,对输入的64个通道进行归一化。
- `self.relu = nn.ReLU(inplace=True)`:定义了一个 ReLU 激活函数,inplace=True 表示原地操作,节省内存。
- `self.layer1`、`self.layer2`、`self.layer3`、`self.layer4`:定义了4个残差块,每个残差块包含一系列的卷积层和批归一化层。
- `self.avgpool = nn.AdaptiveAvgPool2d((1, 1))`:定义了一个自适应平均池化层,将输入的特征图大小自适应地池化为大小为1x1。
- `self.fc = nn.Linear(512, 10)`:定义了一个全连接层,将输入特征的维度从512降至10。
```python
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x) + x
x = self.layer2(x) + x
x = self.layer3(x) + x
x = self.layer4(x) + x
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
- `def forward(self, x):`:定义了前向传播的方法。
- `x = self.conv1(x)`:将输入 `x` 通过卷积层 `self.conv1` 进行卷积操作。
- `x = self.bn1(x)`:将卷积后的结果 `x` 通过批归一化层 `self.bn1` 进行归一化。
- `x = self.relu(x)`:将归一化后的结果 `x` 通过 ReLU 激活函数进行激活。
- `x = self.layer1(x) + x`:将 `x` 与 `self.layer1(x)` 相加,实现残差连接。
- `x = self.layer2(x) + x`、`x = self.layer3(x) + x`、`x = self.layer4(x) + x`:依次将 `x` 与 `self.layer2(x)`、`self.layer3(x)`、`self.layer4(x)` 相加,实现残差连接。
- `x = self.avgpool(x)`:将输入 `x` 通过自适应平均池化层 `self.avgpool` 进行池化操作。
- `x = x.view(x.size(0), -1)`:将池化后的结果 `x` 展平成一维向量。
- `x = self.fc(x)`:将展平后的结果 `x` 通过全连接层 `self.fc` 进行线性变换。
- `return x`:返回前向传播的结果。
这段代码定义了一个包含卷积层、批归一化层、残差块和全连接层的 ResNet18 模型,并实现了前向传播方法。
resnet18模型测试
使用 ResNet18 模型进行测试的过程如下:
1. 导入相关库:torch、torchvision、PIL以及resnet等。
2. 定义设备为GPU,读取测试图片并进行尺寸大小改变和转变为张量类型。
3. 加载 ResNet18 模型,并导入之前训练好的权重。
4. 将模型移动到GPU上,并设置为评估模式。
5. 利用no_grad()函数关闭梯度计算,将测试图片移动到GPU上,并对其进行预测。
6. 输出预测结果。
需要注意的是,在预测时需要保证测试图片与训练时的图片尺寸大小一致,并且要将通道数改为3。同时,预测结果是一个整数值,需要根据具体的分类标签进行解释。
--相关问题--:
阅读全文