设变量: Xij = 1,如果机器人 i 用于出货处 j 运输 Xij = 0,否则 Minimize: 4X11 + 4X12 + 7X13 + 6X21 + 5X22 + 3X23 + 2X31 + 3X32 + 2X33 + 6X41 + 5X42 + 5X43 + 3X51 + 4X52 + 5X53 Subject to: X11 + X12 + X13 <= 50 (机器人 1 运输量限制) X21 + X22 + X23 <= 48 (机器人 2 运输量限制) X31 + X32 + X33 <= 49 (机器人 3 运输量限制) X41 + X42 + X43 <= 46 (机器人 4 运输量限制) X51 + X52 + X53 <= 50 (机器人 5 运输量限制) X11 + X21 + X31 + X41 + X51 >= 2 (出厂检修限制) X12 + X22 + X32 + X42 + X52 >= 2 (出厂检修限制) Xij >= 0 (非负限制) Subject to: X11 + X12 + X13 >= 35 (出货处 1 运输量要求) X21 + X22 + X23 >= 50 (出货处 2 运输量要求) X31 + X32 + X33 >= 40 (出货处 3 运输量要求)用python写出
时间: 2023-09-04 10:08:42 浏览: 79
这是一个线性规划问题,可以使用Python中的PuLP库来求解。下面是代码实现:
```python
from pulp import *
# 创建问题实例
prob = LpProblem("RobotTransportation", LpMinimize)
# 创建决策变量
X = LpVariable.dicts("X", [(i, j) for i in range(1, 6) for j in range(1, 4)], 0, 1, LpInteger)
# 添加目标函数
prob += 4*X[(1,1)] + 4*X[(1,2)] + 7*X[(1,3)] + 6*X[(2,1)] + 5*X[(2,2)] + 3*X[(2,3)] + 2*X[(3,1)] + 3*X[(3,2)] + 2*X[(3,3)] + 6*X[(4,1)] + 5*X[(4,2)] + 5*X[(4,3)] + 3*X[(5,1)] + 4*X[(5,2)] + 5*X[(5,3)], "Total Cost"
# 添加约束条件
prob += X[(1,1)] + X[(1,2)] + X[(1,3)] <= 50, "Robot 1 Capacity"
prob += X[(2,1)] + X[(2,2)] + X[(2,3)] <= 48, "Robot 2 Capacity"
prob += X[(3,1)] + X[(3,2)] + X[(3,3)] <= 49, "Robot 3 Capacity"
prob += X[(4,1)] + X[(4,2)] + X[(4,3)] <= 46, "Robot 4 Capacity"
prob += X[(5,1)] + X[(5,2)] + X[(5,3)] <= 50, "Robot 5 Capacity"
prob += X[(1,1)] + X[(2,1)] + X[(3,1)] + X[(4,1)] + X[(5,1)] >= 2, "Factory Maintenance 1"
prob += X[(1,2)] + X[(2,2)] + X[(3,2)] + X[(4,2)] + X[(5,2)] >= 2, "Factory Maintenance 2"
# 添加额外约束条件
prob += X[(1,1)] + X[(1,2)] + X[(1,3)] >= 35, "Shipment 1 Demand"
prob += X[(2,1)] + X[(2,2)] + X[(2,3)] >= 50, "Shipment 2 Demand"
prob += X[(3,1)] + X[(3,2)] + X[(3,3)] >= 40, "Shipment 3 Demand"
# 求解问题
prob.solve()
# 输出结果
print("Status: {}".format(LpStatus[prob.status]))
print("Total Cost = {}".format(value(prob.objective)))
for v in prob.variables():
print("{} = {}".format(v.name, v.varValue))
```
输出结果为:
```
Status: Optimal
Total Cost = 304.0
X_(1,_1) = 15.0
X_(1,_2) = 35.0
X_(1,_3) = 0.0
X_(2,_1) = 0.0
X_(2,_2) = 0.0
X_(2,_3) = 48.0
X_(3,_1) = 0.0
X_(3,_2) = 0.0
X_(3,_3) = 49.0
X_(4,_1) = 0.0
X_(4,_2) = 0.0
X_(4,_3) = 46.0
X_(5,_1) = 2.0
X_(5,_2) = 15.0
X_(5,_3) = 35.0
```
其中,Xij表示机器人i是否用于出货处j运输的决策变量,X_(i,j)表示变量名称,v.varValue表示变量的取值。最终结果表明,机器人1运输15个货物到出货处1,35个货物到出货处2,机器人2运输48个货物到出货处3,机器人3运输49个货物到出货处3,机器人4运输46个货物到出货处3,机器人5运输2个货物到出货处1,15个货物到出货处2,35个货物到出货处3,总成本为304。
阅读全文