解释一下这段python代码:class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 32, 3, 2)#输入chanel数,输出卷积核个数(输出chanel数),卷积核大小,卷积核移动步长 self.conv2 = nn.Conv2d(32, 64, 3, 2) self.dropout1 = nn.Dropout(0.25) self.dropout2 = nn.Dropout(0.5) self.fc1 = nn.Linear(3136, 128) self.fc2 = nn.Linear(128, 5) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output
时间: 2023-05-28 22:07:30 浏览: 174
Residual-Networks.zip_-baijiahao_47W_python residual_python残差网络
这段代码定义了一个名为Net的类,继承了PyTorch中的nn.Module类。在类的初始化方法中,通过super()函数调用父类的初始化方法,初始化了Net类,并创建了一个名为conv1的卷积层,该层的输入通道数为3,输出通道数为32,卷积核大小为3x3,步长为2。这个卷积层可以用于处理输入为3通道的图像数据,提取特征信息,减少数据维度。
阅读全文