soft teacher在代码中怎么修改阈值
时间: 2024-03-06 19:48:34 浏览: 120
在代码中修改Soft Teacher的阈值,需要对实现Soft Teacher的代码进行修改。具体来说,假设使用PyTorch实现Soft Teacher,代码修改如下:
1.首先,需要定义一个新的Soft Teacher类,以包含阈值这个超参数:
```python
class NewSoftTeacher(nn.Module):
def __init__(self, teacher_model, temperature, threshold):
super(NewSoftTeacher, self).__init__()
self.teacher_model = teacher_model
self.temperature = temperature
self.threshold = threshold
```
2.接着,需要修改Soft Teacher类中的forward方法,以根据阈值对软标签和硬标签进行加权:
```python
def forward(self, input_ids, attention_mask):
with torch.no_grad():
teacher_outputs = self.teacher_model(input_ids, attention_mask)
teacher_logits = teacher_outputs[0] / self.temperature
teacher_probs = F.softmax(teacher_logits, dim=-1)
student_outputs = self.student_model(input_ids, attention_mask)
student_logits = student_outputs[0] / self.temperature
student_probs = F.softmax(student_logits, dim=-1)
soft_labels = self.threshold * teacher_probs + (1 - self.threshold) * student_probs
hard_labels = student_probs
outputs = (student_logits, soft_labels, hard_labels) + student_outputs[1:]
return outputs
```
其中,soft_labels表示软标签,通过将阈值乘以teacher_probs和将1减去阈值乘以student_probs相加得到;hard_labels表示硬标签,即student_probs。
3.最后,在训练代码中,需要将原来的Soft Teacher类替换为新的Soft Teacher类,并传入阈值这个超参数:
```python
teacher = NewSoftTeacher(teacher_model, temperature, threshold)
```
其中,threshold就是Soft Teacher的阈值。
需要注意的是,阈值的选择需要根据具体情况进行调整,需要不断尝试和调整才能够得到最优的结果。
阅读全文