Matlab计算三重积分\int _{1}^{2}dx \int _{ \sqrt {x}}^{x^{2}}dy \int _{ \sqrt {xy}}^{x^{2}y}(x^{2}+y^{2}+z^{2})dz%
时间: 2023-09-29 19:02:21 浏览: 138
try.zip_matlab三重积分_三重积分_蒙特卡洛 积分_蒙特卡洛matlab_计算方法_matlab
5星 · 资源好评率100%
好的,这是一个三重积分的计算问题。我们可以先按照积分的次序,从内向外依次计算。
首先,最内层的积分是对 $z$ 的积分,积分区间是 $[\sqrt{xy}, x^2y]$,被积函数是 $(x^2+y^2+z^2)$。按照积分公式,这个积分的结果为:
$$
\int_{\sqrt{xy}}^{x^2y} (x^2+y^2+z^2)dz = \left[x^2y+z(x^2+y^2)+\frac{1}{3}z^3\right]_{\sqrt{xy}}^{x^2y}
$$
化简一下得到:
$$
\frac{2}{3}x^6y^3 - \frac{2}{3}x^3y^2 - \frac{1}{3}xy^{\frac{3}{2}} - \frac{1}{3}x^2y^{\frac{5}{2}} + \frac{2}{3}xy^2 + \frac{2}{3}x^2y^4 - \frac{2}{3}xy^{\frac{7}{2}} - \frac{2}{9}x^2y^3
$$
接下来,我们对 $y$ 进行积分,积分区间是 $[\sqrt{x}, x^2]$,被积函数是上一步的结果。按照积分公式,这个积分的结果为:
$$
\begin{aligned}
&\int_{\sqrt{x}}^{x^2} \frac{2}{3}x^6y^3 - \frac{2}{3}x^3y^2 - \frac{1}{3}xy^{\frac{3}{2}} - \frac{1}{3}x^2y^{\frac{5}{2}} + \frac{2}{3}xy^2 + \frac{2}{3}x^2y^4 - \frac{2}{3}xy^{\frac{7}{2}} - \frac{2}{9}x^2y^3 dy \\
=& \left[\frac{1}{12}x^6y^4 - \frac{2}{15}x^3y^3 - \frac{2}{15}xy^{\frac{5}{2}} - \frac{2}{21}x^2y^{\frac{7}{2}} + \frac{1}{3}xy^3 + \frac{1}{15}x^2y^5 - \frac{2}{27}xy^{\frac{9}{2}} - \frac{1}{27}x^2y^4 \right]_{\sqrt{x}}^{x^2}
\end{aligned}
$$
化简一下得到:
$$
\frac{7}{60}x^{\frac{13}{2}} - \frac{3}{4}x^6 - \frac{2}{5}x^{\frac{5}{2}} - \frac{2}{9}x^5 + \frac{2}{3}x^{\frac{7}{2}} + \frac{4}{15}x^4 - \frac{2}{21}x^{\frac{7}{2}} - \frac{2}{27}x^4 - \frac{1}{12}x^3 + \frac{1}{3}x^2 - \frac{2}{15}x^{\frac{5}{2}} - \frac{1}{27}x^3 + \frac{1}{3}x
$$
最后,我们对 $x$ 进行积分,积分区间是 $[1, 2]$,被积函数是上一步的结果。按照积分公式,这个积分的结果为:
$$
\begin{aligned}
&\int_{1}^{2} \left(\frac{7}{60}x^{\frac{13}{2}} - \frac{3}{4}x^6 - \frac{2}{5}x^{\frac{5}{2}} - \frac{2}{9}x^5 + \frac{2}{3}x^{\frac{7}{2}} + \frac{4}{15}x^4 - \frac{2}{21}x^{\frac{7}{2}} - \frac{2}{27}x^4 - \frac{1}{12}x^3 + \frac{1}{3}x^2 - \frac{2}{15}x^{\frac{5}{2}} - \frac{1}{27}x^3 + \frac{1}{3}x\right)dx \\
=& \left(\frac{7}{585}x^{\frac{15}{2}} - \frac{1}{2}x^7 - \frac{4}{35}x^{\frac{7}{2}} - \frac{1}{18}x^6 + \frac{1}{3}x^{\frac{9}{2}} + \frac{2}{15}x^5 - \frac{2}{63}x^{\frac{9}{2}} - \frac{1}{54}x^5 - \frac{1}{96}x^4 + \frac{1}{9}x^3 - \frac{4}{45}x^{\frac{7}{2}} - \frac{1}{81}x^4 + \frac{1}{6}x^2\right)_{1}^{2}
\end{aligned}
$$
化简一下得到:
$$
\frac{3109}{5850} - \frac{1}{2} - \frac{8}{35} - \frac{1}{18} + \frac{16}{3} - \frac{32}{15} - \frac{2}{21} + \frac{2}{27} - \frac{1}{192} + \frac{8}{27} - \frac{8}{45} - \frac{2}{81} + \frac{5}{6}
$$
因此,原积分的结果约为 $2.8627$。
阅读全文