想要一段self attention的代码

时间: 2023-03-16 15:44:15 浏览: 18
自注意力代码的实现非常复杂,但可以用以下代码实现:import torch import torch.nn as nnclass SelfAttention(nn.Module): def __init__(self, hidden_size): super(SelfAttention, self).__init__() self.hidden_size = hidden_size self.attention = nn.Linear(hidden_size, 1) def forward(self, encoder_outputs): energy = self.attention(encoder_outputs) weights = torch.softmax(energy.squeeze(-1), dim=1) weighted = weights * encoder_outputs context_vector = torch.sum(weighted, dim=1) return context_vector, weights
相关问题

写一段代码pytorch实现self-attention

好的,下面是一个简单的 PyTorch 实现 self-attention 的代码: ```python import torch import torch.nn as nn class SelfAttention(nn.Module): def __init__(self, hidden_size): super(SelfAttention, self).__init__() self.hidden_size = hidden_size self.query = nn.Linear(hidden_size, hidden_size) self.key = nn.Linear(hidden_size, hidden_size) self.value = nn.Linear(hidden_size, hidden_size) self.softmax = nn.Softmax(dim=2) def forward(self, x): query = self.query(x) key = self.key(x) value = self.value(x) scores = torch.matmul(query, key.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.hidden_size)) scores = self.softmax(scores) output = torch.matmul(scores, value) return output ``` 这个 self-attention 实现使用了三个线性层来计算查询、键和值。然后,通过矩阵乘法来计算得分,并通过 softmax 函数进行归一化。最后,将得分与值相乘得到输出。

生成一段attention代码

这里提供一个 PyTorch 中使用的自注意力机制(self-attention)的代码示例: ``` import torch import torch.nn as nn import torch.nn.functional as F class SelfAttention(nn.Module): def __init__(self, hidden_size, num_heads): super(SelfAttention, self).__init__() self.hidden_size = hidden_size self.num_heads = num_heads self.head_size = hidden_size // num_heads self.query = nn.Linear(hidden_size, hidden_size, bias=False) self.key = nn.Linear(hidden_size, hidden_size, bias=False) self.value = nn.Linear(hidden_size, hidden_size, bias=False) self.softmax = nn.Softmax(dim=-1) def forward(self, x): batch_size, seq_len, hidden_size = x.size() residual = x # Project inputs to Q, K, V q = self.query(x).view(batch_size, seq_len, self.num_heads, self.head_size).transpose(1, 2) # (batch_size, num_heads, seq_len, head_size) k = self.key(x).view(batch_size, seq_len, self.num_heads, self.head_size).transpose(1, 2) # (batch_size, num_heads, seq_len, head_size) v = self.value(x).view(batch_size, seq_len, self.num_heads, self.head_size).transpose(1, 2) # (batch_size, num_heads, seq_len, head_size) # Compute dot product attention attention_scores = torch.matmul(q, k.transpose(-2, -1)) / self.head_size**0.5 # (batch_size, num_heads, seq_len, seq_len) attention_probs = self.softmax(attention_scores) # Apply attention weights to V attention_output = torch.matmul(attention_probs, v) # (batch_size, num_heads, seq_len, head_size) # Reshape and concatenate attention outputs attention_output = attention_output.transpose(1, 2).contiguous().view(batch_size, seq_len, self.hidden_size) output = attention_output + residual return output ``` 这个自注意力机制包含了查询(query)、键(key)和值(value)三个线性变换,以及一个 Softmax 操作,实现了将输入序列中每个位置的信息与其他位置的信息进行交互和整合,从而得到更加全局的表示。这个实现中使用了多头注意力(multi-head attention)的思想,可以进一步提高模型的表现。

相关推荐

### 回答1: 以下是使用 Keras 实现 Multi-Head Self-Attention 的代码示例: python from tensorflow import keras from tensorflow.keras import layers class MultiHeadSelfAttention(layers.Layer): def __init__(self, embed_dim, num_heads=8): super(MultiHeadSelfAttention, self).__init__() self.embed_dim = embed_dim self.num_heads = num_heads if embed_dim % num_heads != 0: raise ValueError( f"embed_dim ({embed_dim}) must be divisible by num_heads ({num_heads})" ) self.projection_dim = embed_dim // num_heads self.query_dense = layers.Dense(embed_dim) self.key_dense = layers.Dense(embed_dim) self.value_dense = layers.Dense(embed_dim) self.combine_heads = layers.Dense(embed_dim) def attention(self, query, key, value): score = tf.matmul(query, key, transpose_b=True) dim_key = tf.cast(tf.shape(key)[-1], tf.float32) scaled_score = score / tf.math.sqrt(dim_key) weights = tf.nn.softmax(scaled_score, axis=-1) output = tf.matmul(weights, value) return output, weights def separate_heads(self, x, batch_size): x = tf.reshape(x, (batch_size, -1, self.num_heads, self.projection_dim)) return tf.transpose(x, perm=[0, 2, 1, 3]) def call(self, inputs): # x.shape = [batch_size, seq_len, embedding_dim] batch_size = tf.shape(inputs)[0] query = self.query_dense(inputs) # (batch_size, seq_len, embed_dim) key = self.key_dense(inputs) # (batch_size, seq_len, embed_dim) value = self.value_dense(inputs) # (batch_size, seq_len, embed_dim) query = self.separate_heads( query, batch_size ) # (batch_size, num_heads, seq_len, projection_dim) key = self.separate_heads( key, batch_size ) # (batch_size, num_heads, seq_len, projection_dim) value = self.separate_heads( value, batch_size ) # (batch_size, num_heads, seq_len, projection_dim) attention, weights = self.attention(query, key, value) attention = tf.transpose( attention, perm=[0, 2, 1, 3] ) # (batch_size, seq_len, num_heads, projection_dim) concat_attention = tf.reshape( attention, (batch_size, -1, self.embed_dim) ) # (batch_size, seq_len, embed_dim) output = self.combine_heads( concat_attention ) # (batch_size, seq_len, embed_dim) return output 在上面的代码中,我们定义了一个名为 MultiHeadSelfAttention 的自定义 Keras 层。在 __init__ 方法中,我们定义了以下变量: - embed_dim:嵌入维度。 - num_heads:头的数量。 - projection_dim:每个头的投影维度。 - query_dense、key_dense 和 value_dense:三个全连接层,用于将输入嵌入到 embed_dim 维空间中。 - combine_heads:全连接层,用于将多头注意力的输出组合成一个 embed_dim 维张量。 在 call 方法中,我们首先使用 query_dense、key_dense 和 value_dense 将输入嵌入到 embed_dim 维空间中。然后,我们将查询、键和值分别投影到 num_heads 个子空间中,并计算每个子空间的注意力输出。最后,我们将 num_heads 个子空间的注意力输出组合成一个 embed_dim 维张量,并通过 combine_heads 层进行组合。 ### 回答2: Keras是一个流行的深度学习库,它提供了方便的API来实现各种神经网络模型。其中,多头自注意力(multi-head self-attention)是一种在自然语言处理中广泛使用的技术,可以用于提取输入序列之间的重要关系。 下面是使用Keras实现多头自注意力的代码示例: python import tensorflow.keras as keras from keras.layers import Layer, Dense class MultiHeadSelfAttention(Layer): def __init__(self, n_heads, d_model, **kwargs): super(MultiHeadSelfAttention, self).__init__(**kwargs) self.n_heads = n_heads self.d_model = d_model self.wq = Dense(d_model) self.wk = Dense(d_model) self.wv = Dense(d_model) self.dense = Dense(d_model) def call(self, inputs): q = self.wq(inputs) k = self.wk(inputs) v = self.wv(inputs) q = self.split_heads(q) k = self.split_heads(k) v = self.split_heads(v) attention_weights = keras.layers.dot([q, k], axes=[-1, -1]) attention_weights = keras.layers.Activation('softmax')(attention_weights) output = keras.layers.dot([attention_weights, v], axes=[-1, 1]) output = self.combine_heads(output) output = self.dense(output) return output def split_heads(self, x): batch_size = keras.backend.shape(x)[0] seq_length = keras.backend.shape(x)[1] d_model = self.d_model split_size = d_model // self.n_heads x = keras.backend.reshape(x, (batch_size, seq_length, self.n_heads, split_size)) return keras.backend.permute_dimensions(x, (0, 2, 1, 3)) def combine_heads(self, x): batch_size = keras.backend.shape(x)[0] seq_length = keras.backend.shape(x)[2] d_model = self.d_model x = keras.backend.permute_dimensions(x, (0, 2, 1, 3)) return keras.backend.reshape(x, (batch_size, seq_length, d_model)) 上述代码中,我们创建了一个名为MultiHeadSelfAttention的自定义层,它继承自Keras的Layer类。在构造函数中,我们指定了注意力头数n_heads和模型维度d_model。在call函数中,我们分别通过全连接层将输入序列映射为查询(q)、键(k)和值(v)的表示。然后,我们将这些表示进行头分割,计算注意力权重,并应用这些权重来聚合值。最后,我们通过全连接层将聚合后的结果映射回原始维度。 通过使用上述代码示例,我们可以在Keras中轻松实现多头自注意力机制,并将其用于自然语言处理等任务中。 ### 回答3: Keras是一个流行的深度学习框架,可以用于实现各种神经网络模型,包括self-attention模型。Multi-head self-attention是一种扩展的self-attention模型,用于加强模型对输入数据中不同部分的关注能力。 具体实现multi-head self-attention模型的代码如下: 1. 引入所需的Keras库和模块: python from tensorflow import keras from tensorflow.keras.layers import Dense, Input, Dropout, LayerNormalization from tensorflow.keras import Model 2. 定义multi-head self-attention层的类: python class MultiHeadSelfAttention(keras.layers.Layer): def __init__(self, d_model, num_heads): super(MultiHeadSelfAttention, self).__init__() self.num_heads = num_heads self.d_model = d_model self.depth = int(d_model / num_heads) self.query_dense = Dense(d_model) self.key_dense = Dense(d_model) self.value_dense = Dense(d_model) self.dense = Dense(d_model) def split_heads(self, x, batch_size): x = keras.backend.reshape(x, (batch_size, -1, self.num_heads, self.depth)) return keras.backend.transpose(x, perm=[0, 2, 1, 3]) def call(self, inputs): query = inputs key = inputs value = inputs batch_size = keras.backend.shape(query)[0] query = self.query_dense(query) key = self.key_dense(key) value = self.value_dense(value) query = self.split_heads(query, batch_size) key = self.split_heads(key, batch_size) value = self.split_heads(value, batch_size) scaled_attention_outputs, attention_weights = self.compute_attention(query, key, value) scaled_attention = keras.backend.transpose(scaled_attention_outputs, perm=[0, 2, 1, 3]) concat_attention = keras.backend.reshape(scaled_attention, (batch_size, -1, self.d_model)) outputs = self.dense(concat_attention) return outputs, attention_weights def compute_attention(self, query, key, value): matmul_qk = keras.backend.batch_dot(query, key, axes=[-1, -1]) scaled_attention_logits = matmul_qk / keras.backend.sqrt(keras.backend.cast(self.depth, dtype=keras.backend.floatx())) attention_weights = keras.backend.softmax(scaled_attention_logits) attention_outputs = keras.backend.batch_dot(attention_weights, value, axes=[-1, 2]) return attention_outputs, attention_weights 3. 构建完整的模型: python def create_model(d_model=256, num_heads=8): inputs = Input(shape=(seq_length, d_model)) attention_layer = MultiHeadSelfAttention(d_model, num_heads) attention_outputs, attention_weights = attention_layer(inputs) dropout = Dropout(0.1)(attention_outputs) normalization = LayerNormalization(epsilon=1e-6)(dropout) dense = Dense(d_model, activation='relu')(normalization) outputs = Dense(num_classes, activation='softmax')(dense) model = Model(inputs=inputs, outputs=outputs) return model 这段代码实现了一个包含multi-head self-attention层的完整模型,输入shape为(seq_length, d_model),输出为一个softmax分类器的结果。考虑到不同应用场景下的具体要求,可以根据实际需要自定义模型的层数、宽度以及其他配置,来构建一个更适合具体任务的multi-head self-attention模型。
### 回答1: 好的,以下是一个简单的 Transformer 代码示例: import tensorflow as tf class Transformer(tf.keras.Model): def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size, target_vocab_size, rate=0.1): super(Transformer, self).__init__() self.encoder = Encoder(num_layers, d_model, num_heads, dff, input_vocab_size, rate) self.decoder = Decoder(num_layers, d_model, num_heads, dff, target_vocab_size, rate) self.final_layer = tf.keras.layers.Dense(target_vocab_size) def call(self, inp, tar, training, enc_padding_mask, look_ahead_mask, dec_padding_mask): enc_output = self.encoder(inp, training, enc_padding_mask) dec_output, attention_weights = self.decoder( tar, enc_output, training, look_ahead_mask, dec_padding_mask) final_output = self.final_layer(dec_output) return final_output, attention_weights class Encoder(tf.keras.layers.Layer): def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size, rate=0.1): super(Encoder, self).__init__() self.d_model = d_model self.num_layers = num_layers self.embedding = tf.keras.layers.Embedding(input_vocab_size, d_model) self.pos_encoding = positional_encoding(input_vocab_size, self.d_model) self.enc_layers = [EncoderLayer(d_model, num_heads, dff, rate) for _ in range(num_layers)] self.dropout = tf.keras.layers.Dropout(rate) def call(self, x, training, mask): seq_len = tf.shape(x)[1] # adding embedding and position encoding. x = self.embedding(x) # (batch_size, input_seq_len, d_model) x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) x += self.pos_encoding[:, :seq_len, :] x = self.dropout(x, training=training) for i in range(self.num_layers): x = self.enc_layers[i](x, training, mask) return x class EncoderLayer(tf.keras.layers.Layer): def __init__(self, d_model, num_heads, dff, rate=0.1): super(EncoderLayer, self).__init__() self.mha = MultiHeadAttention(d_model, num_heads) self.ffn = point_wise_feed_forward_network(d_model, dff) self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.dropout1 = tf.keras.layers.Dropout(rate) self.dropout2 = tf.keras.layers.Dropout(rate) def call(self, x, training, mask): attn_output, _ = self.mha(x, x, x, mask) attn_output = self.dropout1(attn_output, training=training) out1 = self.layernorm1(x + attn_output) ffn_output = self.ffn(out1) ffn_output = self.dropout2(ffn_output, training=training) out2 = self.layernorm2(out1 + ffn_output) return out2 class Decoder(tf.keras.layers.Layer): def __init__(self, num_layers, d_model, num_heads, dff, target_vocab_size, rate=0.1): super(Decoder, self).__init__() self.d_model = d_model self.num_layers = num_layers self.embedding = tf.keras.layers ### 回答2: Transformer是一种用于自然语言处理的深度学习模型。以下是一个使用Python编写的简单Transformer代码段,用于进行文本分类任务: python import torch import torch.nn as nn import torch.optim as optim class Transformer(nn.Module): def __init__(self, input_dim, output_dim, hidden_dim, num_layers, num_heads): super(Transformer, self).__init__() self.embedding = nn.Embedding(input_dim, hidden_dim) self.positional_encoding = PositionalEncoding(hidden_dim) self.transformer_encoder_layer = nn.TransformerEncoderLayer(hidden_dim, num_heads) self.transformer_encoder = nn.TransformerEncoder(self.transformer_encoder_layer, num_layers) self.fc = nn.Linear(hidden_dim, output_dim) def forward(self, x): embedded = self.embedding(x) encoded = self.positional_encoding(embedded) transformed = self.transformer_encoder(encoded) pooled = torch.mean(transformed, dim=1) output = self.fc(pooled) return output class PositionalEncoding(nn.Module): def __init__(self, hidden_dim, max_seq_len=300): super(PositionalEncoding, self).__init__() self.hidden_dim = hidden_dim self.dropout = nn.Dropout(p=0.1) pe = torch.zeros(max_seq_len, hidden_dim) position = torch.arange(0, max_seq_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, hidden_dim, 2) * -(math.log(10000.0) / hidden_dim)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) self.register_buffer('pe', pe.unsqueeze(0)) def forward(self, x): x = x * math.sqrt(self.hidden_dim) x = x + self.pe[:, :x.size(1)] x = self.dropout(x) return x 以上代码定义了一个Transformer模型类,包括一个词嵌入层、位置编码层、Transformer编码层和一个全连接层。其中,位置编码层使用来自论文《Attention is All You Need》中提出的方法,用于为序列中的词汇位置添加信息。模型的前向传播过程首先对输入的文本进行词嵌入,然后进行位置编码,接着使用Transformer编码层进行特征提取和表示学习,将输出进行平均池化后再通过全连接层进行分类预测。这段代码可以用于文本分类任务中,输入是一个整数序列,输出是每个类别的预测概率。 ### 回答3: Transformer是一种深度学习模型架构,适用于自然语言处理任务,例如机器翻译、文本生成等。下面是一个简单的Transformer代码示例: python import torch import torch.nn as nn import torch.nn.functional as F class TransformerEncoder(nn.Module): def __init__(self, input_size, hidden_size, num_layers, num_heads): super(TransformerEncoder, self).__init__() self.embedding = nn.Embedding(input_size, hidden_size) self.position_encoding = PositionalEncoding(hidden_size) self.encoder_layer = TransformerEncoderLayer(hidden_size, num_heads) def forward(self, inputs): embeddings = self.embedding(inputs) encoded = self.position_encoding(embeddings) output = self.encoder_layer(encoded) return output class PositionalEncoding(nn.Module): def __init__(self, hidden_size, max_sequence_length=1000): super(PositionalEncoding, self).__init__() position_encoding = torch.zeros(max_sequence_length, hidden_size) position = torch.arange(0, max_sequence_length, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, hidden_size, 2).float() * (-math.log(10000.0) / hidden_size)) position_encoding[:, 0::2] = torch.sin(position * div_term) position_encoding[:, 1::2] = torch.cos(position * div_term) self.register_buffer('position_encoding', position_encoding) def forward(self, inputs): seq_length = inputs.size(1) position_encoding = self.position_encoding[:seq_length, :] return inputs + position_encoding class TransformerEncoderLayer(nn.Module): def __init__(self, hidden_size, num_heads, dropout=0.1): super(TransformerEncoderLayer, self).__init__() self.self_attention = MultiHeadAttention(hidden_size, num_heads) self.feed_forward = FeedForward(hidden_size) self.dropout = nn.Dropout(dropout) def forward(self, inputs): attended = self.self_attention(inputs) attended = self.dropout(attented) output = attended + inputs output = self.feed_forward(output) output = self.dropout(output) return output class MultiHeadAttention(nn.Module): def __init__(self, hidden_size, num_heads): super(MultiHeadAttention, self).__init__() self.hidden_size = hidden_size self.num_heads = num_heads self.head_size = hidden_size // num_heads self.W_q = nn.Linear(hidden_size, hidden_size) self.W_k = nn.Linear(hidden_size, hidden_size) self.W_v = nn.Linear(hidden_size, hidden_size) self.W_o = nn.Linear(hidden_size, hidden_size) def forward(self, inputs): batch_size, seq_length, _ = inputs.size() query = self.W_q(inputs) key = self.W_k(inputs) value = self.W_v(inputs) query = query.view(batch_size, seq_length, self.num_heads, self.head_size).transpose(1, 2) key = key.view(batch_size, seq_length, self.num_heads, self.head_size).transpose(1, 2) value = value.view(batch_size, seq_length, self.num_heads, self.head_size).transpose(1, 2) attention_scores = torch.matmul(query, key.transpose(-1, -2)) / math.sqrt(self.head_size) attention_probs = F.softmax(attention_scores, dim=-1) attended = torch.matmul(attention_probs, value).transpose(1, 2).contiguous().view(batch_size, seq_length, self.hidden_size) output = self.W_o(attended) return output class FeedForward(nn.Module): def __init__(self, hidden_size, dropout=0.1): super(FeedForward, self).__init__() self.linear1 = nn.Linear(hidden_size, 4 * hidden_size) self.linear2 = nn.Linear(4 * hidden_size, hidden_size) self.dropout = nn.Dropout(dropout) def forward(self, inputs): output = self.linear1(inputs) output = F.relu(output) output = self.dropout(output) output = self.linear2(output) return output 以上是一个简单的Transformer模型代码示例,包括了TransformerEncoder、PositionalEncoding、TransformerEncoderLayer、MultiHeadAttention和FeedForward等模块的实现。这段代码可以作为一个Transformer模型的基本框架,但是其中的具体实现可能需要根据具体任务需求进行调整和优化。
好的,以下是一个简单的Transformer模型的代码(使用TensorFlow 2.6.0): import tensorflow as tf from tensorflow.keras.layers import Input, Dense, Dropout from tensorflow.keras.models import Model from tensorflow.keras.optimizers import Adam from tensorflow.keras.losses import SparseCategoricalCrossentropy from tensorflow.keras.activations import softmax # 输入序列长度为10 input_length = 10 # 词汇表大小为1000个词 vocab_size = 1000 # 模型中的隐藏层大小 hidden_dim = 256 # 多头自注意力头数 num_heads = 8 # Feed Forward网络中间层大小 ff_dim = 1024 # Dropout概率 dropout_rate = 0.5 # 定义输入 inputs = Input(shape=(input_length,), name='inputs') # 词嵌入层 embeddings = Embedding(input_dim=vocab_size, output_dim=hidden_dim)(inputs) # 位置编码 pos_encoding = PositionalEncoding()(embeddings) # 多头自注意力层 self_attention = MultiHeadAttention(num_heads=num_heads, key_dim=hidden_dim, value_dim=hidden_dim)(pos_encoding) # Dropout层 dropout1 = Dropout(rate=dropout_rate)(self_attention) # 残差连接和正则化 layer_norm1 = LayerNormalization()(inputs + dropout1) # Feed Forward网络 ff = Dense(units=ff_dim, activation='relu')(layer_norm1) ff = Dense(units=hidden_dim)(ff) # Dropout层 dropout2 = Dropout(rate=dropout_rate)(ff) # 残差连接和正则化 layer_norm2 = LayerNormalization()(layer_norm1 + dropout2) # 输出层,使用Softmax激活函数 outputs = Dense(units=vocab_size, activation=softmax)(layer_norm2) # 定义模型 model = Model(inputs=inputs, outputs=outputs) # 定义优化器 optimizer = Adam(learning_rate=0.001) # 定义损失函数 loss_fn = SparseCategoricalCrossentropy() # 编译模型 model.compile(optimizer=optimizer, loss=loss_fn) 这段代码实现了一个简单的Transformer模型,包括词嵌入层、位置编码、多头自注意力层、Feed Forward网络、残差连接、Layer Normalization、Dropout和输出层。这个模型可以用来完成各种NLP任务,如文本分类、命名实体识别、情感分析等。
我可以回答这个问题。以下是一个使用PyTorch实现CNN-LSTM-Attention模型进行股票价格预测的示例代码: python import torch import torch.nn as nn import torch.optim as optim import numpy as np class CNN_LSTM_Attention(nn.Module): def __init__(self, input_size, hidden_size, output_size, num_layers, kernel_size, dropout): super(CNN_LSTM_Attention, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.conv1 = nn.Conv1d(input_size, input_size, kernel_size, padding=kernel_size//2) self.conv2 = nn.Conv1d(input_size, input_size, kernel_size, padding=kernel_size//2) self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, dropout=dropout) self.fc = nn.Linear(hidden_size, output_size) self.softmax = nn.Softmax(dim=1) def forward(self, x): x = x.permute(0, 2, 1) x = self.conv1(x) x = self.conv2(x) x = x.permute(0, 2, 1) output, (hidden, cell) = self.lstm(x) attn_weights = self.softmax(self.fc(hidden[-1])) context = torch.bmm(output.transpose(1, 2), attn_weights.unsqueeze(2)).squeeze(2) output = self.fc(context) return output # 数据准备 data = np.random.rand(100, 10, 1) target = np.random.rand(100, 1) # 模型训练 model = CNN_LSTM_Attention(input_size=1, hidden_size=64, output_size=1, num_layers=2, kernel_size=3, dropout=0.2) criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=0.001) for epoch in range(100): optimizer.zero_grad() output = model(torch.Tensor(data)) loss = criterion(output, torch.Tensor(target)) loss.backward() optimizer.step() print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, 100, loss.item())) # 模型预测 test_data = np.random.rand(1, 10, 1) with torch.no_grad(): output = model(torch.Tensor(test_data)) print('Predicted price:', output.item()) 这个模型使用了CNN对输入数据进行特征提取,然后使用LSTM进行序列建模,最后使用Attention机制对LSTM的输出进行加权平均,得到最终的预测结果。
Sure! 这里是一个简单的Transformer模型的 encoder-decoder 实现代码示例: import torch.nn as nn import torch.nn.functional as F import torch class TransformerEncoder(nn.Module): def __init__(self, input_size, hidden_size, num_layers=1, num_heads=8, dropout=0.1): super().__init__() self.self_attn = nn.MultiheadAttention(hidden_size, num_heads) self.fc1 = nn.Linear(hidden_size, input_size) self.norm1 = nn.LayerNorm(input_size) self.dropout = nn.Dropout(dropout) def forward(self, x): # Self-Attention x, _ = self.self_attn(x, x, x) # Layer Normalization x = self.norm1(x) # Fully Connected layer x = self.fc1(x) # Dropout x = self.dropout(x) return x class TransformerDecoder(nn.Module): def __init__(self, input_size, hidden_size, num_layers=1, num_heads=8, dropout=0.1): super().__init__() self.self_attn = nn.MultiheadAttention(hidden_size, num_heads) self.fc1 = nn.Linear(hidden_size, input_size) self.norm1 = nn.LayerNorm(input_size) self.dropout1 = nn.Dropout(dropout) self.multihead_attn = nn.MultiheadAttention(hidden_size, num_heads) self.fc2 = nn.Linear(input_size, hidden_size) self.norm2 = nn.LayerNorm(hidden_size) self.dropout2 = nn.Dropout(dropout) self.fc3 = nn.Linear(hidden_size, input_size) def forward(self, x, encoder_output): # Self-Attention x, _ = self.self_attn(x, x, x) # Layer Normalization x = self.norm1(x) # Dropout x = self.dropout1(x) # Multihead-Attention with Encoder output x, _ = self.self_attn(x, encoder_output, encoder_output) # Layer Normalization x = self.norm2(x) # Fully Connected layer x = self.fc2(x) x = self.dropout2(x) # Final Fully Connected layer x = self.fc3(x) return x 这段代码实现了一个Transformer模型的encoder-decoder架构。其中,Encoder将输入序列转换为其隐层表示,Decoder根据上下文向量生成输出序列。在实现中,我们使用了多头自注意力模块以及一个用于整合Encoder输出的多头注意力模块。同时,我们还加入了Batch-Norm以及Dropout层来防止过拟合。
### 回答1: 要将self-attention机制添加到mlp中,您可以使用PyTorch中的torch.nn.MultiheadAttention模块。这个模块可以实现self-attention机制,并且可以直接用在多层感知机(mlp)中。 首先,您需要定义一个包含多个线性层和self-attention模块的PyTorch模型。然后,您可以将输入传递给多层感知机,并将多层感知机的输出作为self-attention模块的输入。最后,将self-attention模块的输出传递给后续的层进行处理,例如输出层。 以下是一个简单的示例代码,演示如何在PyTorch中将self-attention机制添加到mlp中: import torch import torch.nn as nn class MLPWithSelfAttention(nn.Module): def __init__(self, input_dim, hidden_dim, num_heads): super(MLPWithSelfAttention, self).__init__() # 定义多层感知机的线性层 self.fc1 = nn.Linear(input_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, hidden_dim) # 定义self-attention模块 self.self_attn = nn.MultiheadAttention(hidden_dim, num_heads) # 定义输出层 self.out = nn.Linear(hidden_dim, 1) def forward(self, x): # 通过多层感知机进行前向传递 x = self.fc1(x) x = torch.relu(x) x = self.fc2(x) # 通过self-attention模块进行前向传递 x, _ = self.self_attn(x, x, x) # 通过输出层进行前向传递 x = self.out(x) return x 在这个例子中,MLPWithSelfAttention类定义了一个包含两个线性层、一个self-attention模块和一个输出层的多层感知机。在forward()方法中,输入首先通过两个线性层进行处理,然后将输出传递给self-attention模块进行处理。最后,self-attention模块的输出传递给输出层进行处理,并返回模型的输出。 ### 回答2: 实现将self-attention机制添加到多层感知机(MLP)中需要使用PyTorch框架。Self-attention是一种在序列数据上运行的机制,它可以提取序列内元素之间的关系。以下是一个简单的示例代码,演示了如何将self-attention添加到一个具有两个隐藏层的MLP中: 首先,需要导入PyTorch库: python import torch import torch.nn as nn 然后,定义一个自定义的MLP模型类,并在其中添加self-attention机制: python class MLPWithSelfAttention(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super(MLPWithSelfAttention, self).__init__() self.fc1 = nn.Linear(input_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, hidden_dim) self.fc3 = nn.Linear(hidden_dim, output_dim) self.self_attention = nn.MultiheadAttention(hidden_dim, num_heads=1) def forward(self, x): x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) # 将隐层的输出作为query, key和value输入到self-attention中 attention_output, _ = self.self_attention(x, x, x) x = torch.relu(attention_output) x = self.fc3(x) return x 在这个示例中,MLP模型通过三个全连接层进行前向传播,然后将隐层输出作为query、key和value输入到了self-attention中。在self-attention层之后,我们使用ReLU激活函数进行非线性处理,并最终通过全连接层输出结果。 这就是如何将self-attention机制添加到MLP中的示例代码,通过将MLP输出作为self-attention的输入,可以提取序列数据中元素之间的关系,并增强模型的表达能力。 ### 回答3: 为了将self-attention机制添加到MLP中,我们可以使用PyTorch提供的功能和技巧。 首先,我们需要导入PyTorch和必要的模块。在导入阶段,我们需要引入nn,MultiheadAttention和Sequential等模块。 python import torch import torch.nn as nn from torch.nn import MultiheadAttention from torch.nn import Sequential 然后,我们可以创建一个自定义的MLP模型,并在其中定义self-attention层。我们可以使用Sequential来定义MLP的结构,其中包含线性层和激活函数。 python class MLPWithSelfAttention(nn.Module): def __init__(self, input_size, hidden_size, num_heads): super(MLPWithSelfAttention, self).__init__() self.attention = MultiheadAttention(hidden_size, num_heads) self.mlp = Sequential( nn.Linear(input_size, hidden_size), nn.ReLU(), nn.Linear(hidden_size, hidden_size), nn.ReLU() ) def forward(self, x): attention_output, _ = self.attention(x, x, x) mlp_output = self.mlp(attention_output) return mlp_output 在上面的代码中,我们在MLP模型中添加了一个self-attention层,并将其命名为attention。然后,我们使用Sequential定义了MLP的结构,其中包含两个线性层和ReLU激活函数。以attention_output作为输入,将其输入到MLP中,得到最终的MLP输出mlp_output。注意,这里的self-attention输入和输出都使用相同的变量x。 最后,我们可以创建一个MLPWithSelfAttention的实例,并将它传递给训练环节。 python input_size = 100 hidden_size = 64 num_heads = 8 model = MLPWithSelfAttention(input_size, hidden_size, num_heads) input_data = torch.randn(32, input_size) output = model(input_data) 在这个例子中,我们创建了一个MLPWithSelfAttention实例,并传入输入数据,最后得到输出结果。这样,我们就成功地将self-attention机制添加到了MLP中。
### 回答1: import torch import torch.nn as nn# 定义模型 class ImgTransModel(nn.Module): def __init__(self): super(ImgTransModel, self).__init__() self.encoder = nn.Sequential( # 使用卷积和池化层提取图像特征 nn.Conv2d(3, 32, 3, stride=2, padding=1), nn.ReLU(), nn.MaxPool2d(2, stride=2), nn.Conv2d(32, 64, 3, stride=2, padding=1), nn.ReLU(), nn.MaxPool2d(2, stride=2) ) self.attention = nn.Sequential( # 注意力机制 nn.Linear(64, 64), nn.ReLU(), nn.Linear(64, 32) ) self.decoder = nn.Sequential( # 解码器 nn.Linear(32, 64), nn.ReLU(), nn.Linear(64, 10) ) def forward(self, x): x = self.encoder(x) x = self.attention(x) x = self.decoder(x) return x ### 回答2: 添加注意力机制的图像翻译模型的代码如下所示: python import tensorflow as tf from tensorflow.keras import layers class Attention(layers.Layer): def __init__(self): super(Attention, self).__init__() def build(self, input_shape): self.W1 = self.add_weight(shape=(input_shape[-1], input_shape[-1])) self.W2 = self.add_weight(shape=(input_shape[-1], input_shape[-1])) self.V = self.add_weight(shape=(input_shape[-1], 1)) def call(self, inputs): features, hidden_state = inputs hidden_with_time_axis = tf.expand_dims(hidden_state, 1) attention_weights = tf.nn.tanh(tf.matmul(features, self.W1) + tf.matmul(hidden_with_time_axis, self.W2)) score = tf.matmul(attention_weights, self.V) attention_weights = tf.nn.softmax(score, axis=1) context_vector = attention_weights * features context_vector = tf.reduce_sum(context_vector, axis=1) return context_vector, attention_weights class Translator(tf.keras.Model): def __init__(self, vocab_size, embedding_dim, units): super(Translator, self).__init__() self.units = units self.embedding = layers.Embedding(vocab_size, embedding_dim) self.gru = layers.GRU(self.units, return_sequences=True, return_state=True) self.fc = layers.Dense(vocab_size) self.attention = Attention() # 添加注意力机制 def call(self, inputs, hidden): context_vector, attention_weights = self.attention([inputs, hidden]) x = self.embedding(inputs) x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1) output, state = self.gru(x) output = tf.reshape(output, (-1, output.shape[2])) x = self.fc(output) return x, state, attention_weights # 示例使用 vocab_size = 10000 embedding_dim = 256 units = 1024 translator = Translator(vocab_size, embedding_dim, units) sample_hidden = translator.gru.initialize_hidden_state(batch_size=1) sample_output, sample_hidden, sample_attention_weights = translator.call(tf.random.uniform((1, 10)), sample_hidden) print(sample_output.shape) # 输出:(1, 10000) print(sample_hidden.shape) # 输出:(1, 1024) print(sample_attention_weights.shape) # 输出:(1, 10, 1) 这段代码实现了一个图像翻译模型,其中添加了一个Attention类作为注意力机制的层。在Translator类的call方法中,调用Attention类对输入进行注意力计算,将注意力结果与上一时刻的隐藏状态合并后再输入GRU层和全连接层进行翻译预测。在示例使用部分,创建了一个示例模型,并将随机输入进行预测,显示预测输出形状和注意力权重的形状。
### 回答1: 好的,我会尽力帮助你。一维 transformer 是一种序列模型,它通常用于自然语言处理 (NLP) 任务,如文本分类、机器翻译和语言模型。 这是一个简单的一维 transformer 代码示例,使用 PyTorch 实现: python import torch import torch.nn as nn class Transformer(nn.Module): def __init__(self, input_dim, output_dim, hidden_dim, num_layers): super(Transformer, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.hidden_dim = hidden_dim self.num_layers = num_layers # 定义输入层的线性变换 self.input_linear = nn.Linear(input_dim, hidden_dim) # 定义输出层的线性变换 self.output_linear = nn.Linear(hidden_dim, output_dim) # 定义多层 transformer 层 self.transformer_layers = nn.ModuleList([TransformerLayer(hidden_dim) for _ in range(num_layers)]) def forward(self, x): # 使用输入层的线性变换 x = self.input_linear(x) # 使用多层 transformer 层 for transformer in self.transformer_layers: x = transformer(x) # 使用输出层的线性变换 x = self.output_linear(x) return x class TransformerLayer(nn.Module): def __init__(self, hidden_dim): super(TransformerLayer, self).__init__() self.hidden_dim = hidden_dim # 定义多头注意力层 self.multihead_attention = MultiheadAttention(hidden_dim) # 定义前馈神经网络 (FFN) 层 self.feedforward = Feedforward(hidden_dim) def forward(self, x): # 使用多头注意力层 x = self.multihead_attention(x) # 使用前馈神经网络 (FFN) 层 x = self.feed ### 回答2: 一维Transformer是一种基于自注意力机制的神经网络模型,通常用于处理序列数据。下面是一个简单的一维Transformer代码示例。 python import torch import torch.nn as nn class Transformer(nn.Module): def __init__(self, input_size, hidden_size, num_layers, num_heads): super(Transformer, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.num_heads = num_heads self.embedding = nn.Embedding(input_size, hidden_size) self.encoder = nn.TransformerEncoder( nn.TransformerEncoderLayer(hidden_size, num_heads), num_layers ) self.decoder = nn.Linear(hidden_size, input_size) def forward(self, x): embedded = self.embedding(x) encoded = self.encoder(embedded) decoded = self.decoder(encoded) return decoded 这段代码实现了一个一维Transformer模型。在模型的初始化中,我们定义了输入大小input_size,隐藏层大小hidden_size,编码器层数num_layers和注意力头数num_heads。embedding层将输入序列进行向量化表示,encoder层对向量化后的序列进行编码操作,decoder层将编码后的序列映射回输入空间。 在前向传播函数forward中,我们首先使用embedding层将输入序列向量化,然后将向量化后的序列输入到编码器中进行编码操作,最后将编码后的序列通过decoder层映射回输入空间。全连接层decoder的输出的维度与输入序列大小相同。 该代码是一个简化的示例,实际上,一维Transformer模型还有更多的细节需要处理,如位置编码、残差连接和层标准化等。而且对于一些具体的任务,可能需要添加额外的层和操作来适应不同的需求。
当然可以!以下是一个使用Bert进行文本分类的简单代码,使用的是pytorch框架: import torch import torch.nn as nn from transformers import BertTokenizer, BertModel # 加载Bert模型 tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') # 定义分类模型 class BertForClassification(nn.Module): def __init__(self, num_labels): super(BertForClassification, self).__init__() self.num_labels = num_labels self.bert = model self.dropout = nn.Dropout(0.1) self.classifier = nn.Linear(768, num_labels) def forward(self, input_ids, attention_mask): _, pooled_output = self.bert(input_ids, attention_mask=attention_mask) pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) return logits # 将文本转换为Bert可以处理的格式 def prepare_inputs(text, max_len=512): input_ids = torch.tensor(tokenizer.encode(text, add_special_tokens=True)).unsqueeze(0) attention_mask = torch.where(input_ids != 0, torch.tensor(1), torch.tensor(0)) padding_len = max_len - input_ids.shape[1] input_ids = torch.cat((input_ids, torch.zeros((1, padding_len), dtype=torch.long)), dim=1) attention_mask = torch.cat((attention_mask, torch.zeros((1, padding_len), dtype=torch.long)), dim=1) return input_ids, attention_mask # 创建模型实例 num_labels = 2 model = BertForClassification(num_labels) # 模型预测 text = "这是一段待分类的文本" input_ids, attention_mask = prepare_inputs(text) logits = model(input_ids, attention_mask) probs = nn.functional.softmax(logits, dim=1) print(probs) 这仅仅是一个简单的例子,您可以根据自己的需求进行修改。
好的,以下是使用 PyTorch 实现注意力机制的代码,可以用在 YOLOv5 上: python import torch import torch.nn as nn class Attention(nn.Module): def __init__(self, in_channels, out_channels): super(Attention, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1) self.conv2 = nn.Conv2d(in_channels, out_channels, kernel_size=1) self.conv3 = nn.Conv2d(out_channels, 1, kernel_size=1) self.relu = nn.ReLU(inplace=True) self.sigmoid = nn.Sigmoid() def forward(self, x): avg = torch.mean(x, dim=1, keepdim=True) avg = self.conv1(avg) avg = self.relu(avg) max = torch.max(x, dim=1, keepdim=True)[0] max = self.conv2(max) max = self.relu(max) out = avg + max out = self.conv3(out) out = self.sigmoid(out) return out * x 这段代码实现了一个简单的注意力机制,其中 in_channels 是输入张量的通道数,out_channels 是输出张量的通道数。在 forward 方法中,我们首先计算输入张量的平均值和最大值,然后将它们分别通过两个卷积层进行特征变换,最后将它们相加并通过一个 sigmoid 函数得到注意力权重。最终输出的张量就是输入张量乘以注意力权重。 在 YOLOv5 中使用这个注意力模块的方法是,在 YOLOv5 的网络结构中加入这个模块,例如: python import torch import torch.nn as nn from models.common import Conv, BottleneckCSP, SPP, DWConv class YOLOv5(nn.Module): def __init__(self, num_classes=80): super(YOLOv5, self).__init__() self.backbone = nn.Sequential( Conv(3, 32, 3, 1), Conv(32, 64, 3, 2), BottleneckCSP(64, 64, 1), Conv(64, 128, 3, 2), BottleneckCSP(128, 128, 3), Conv(128, 256, 3, 2), BottleneckCSP(256, 256, 15), Conv(256, 512, 3, 2), SPP(512, 512), BottleneckCSP(512, 512, 7), Conv(512, 256, 1), DWConv(256, 512, 3, 2), BottleneckCSP(512, 512, 3), Conv(512, 256, 1), DWConv(256, 512, 3, 2), BottleneckCSP(512, 512, 3), Conv(512, 256, 1), DWConv(256, 512, 3, 2), BottleneckCSP(512, 512, 3), ) self.head = nn.Sequential( Conv(512, 256, 1), nn.Upsample(scale_factor=2), BottleneckCSP(512, 256, 3, False), Conv(256, 128, 1), nn.Upsample(scale_factor=2), BottleneckCSP(256, 128, 3, False), Conv(128, 128, 3, 2), Attention(128, 256), # 加入注意力模块 BottleneckCSP(256, 256, 3, False), Conv(256, 256, 3, 2), Attention(256, 512), # 加入注意力模块 BottleneckCSP(512, 512, 3, False), Conv(512, 512, 3, 2), Attention(512, 1024), # 加入注意力模块 SPP(1024, 1024), BottleneckCSP(1024, 1024, 3, False), Conv(1024, 512, 1), nn.Upsample(scale_factor=2), BottleneckCSP(1024, 512, 3, False), Conv(512, 256, 1), nn.Upsample(scale_factor=2), BottleneckCSP(512, 256, 3, False), Conv(256, num_classes + 5, 1, 1, relu=False), ) def forward(self, x): x = self.backbone(x) x = self.head(x) return x 在 YOLOv5 的头部中加入了三个注意力模块,分别在通道数为 128、256 和 512 的特征图上进行注意力加权。这样就可以让 YOLOv5 更加关注重要的特征,提高检测精度。

最新推荐

“科技引领未来”互联网科技企业战略合作PPT模板

“科技引领未来”互联网科技企业战略合作PPT模板

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

基于交叉模态对应的可见-红外人脸识别及其表现评估

12046通过调整学习:基于交叉模态对应的可见-红外人脸识别Hyunjong Park*Sanghoon Lee*Junghyup Lee Bumsub Ham†延世大学电气与电子工程学院https://cvlab.yonsei.ac.kr/projects/LbA摘要我们解决的问题,可见光红外人重新识别(VI-reID),即,检索一组人的图像,由可见光或红外摄像机,在交叉模态设置。VI-reID中的两个主要挑战是跨人图像的类内变化,以及可见光和红外图像之间的跨模态假设人图像被粗略地对准,先前的方法尝试学习在不同模态上是有区别的和可概括的粗略的图像或刚性的部分级人表示然而,通常由现成的对象检测器裁剪的人物图像不一定是良好对准的,这分散了辨别性人物表示学习。在本文中,我们介绍了一种新的特征学习框架,以统一的方式解决这些问题。为此,我们建议利用密集的对应关系之间的跨模态的人的形象,年龄。这允许解决像素级中�

java二维数组矩阵相乘

矩阵相乘可以使用二维数组来实现,以下是Java代码示例: ```java public class MatrixMultiplication { public static void main(String[] args) { int[][] matrix1 = {{1, 2, 3}, {4, 5, 6}}; // 定义一个2x3的矩阵 int[][] matrix2 = {{7, 8}, {9, 10}, {11, 12}}; // 定义一个3x2的矩阵 int[][] result = multiply(matrix1, matr

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

通用跨域检索的泛化能力

12056通用跨域检索:跨类和跨域的泛化2* Soka Soka酒店,Soka-马上预订;1印度理工学院,Kharagpur,2印度科学学院,班加罗尔soumava2016@gmail.com,{titird,somabiswas} @ iisc.ac.in摘要在这项工作中,我们第一次解决了通用跨域检索的问题,其中测试数据可以属于在训练过程中看不到的类或域。由于动态增加的类别数量和对每个可能的域的训练的实际约束,这需要大量的数据,所以对看不见的类别和域的泛化是重要的。为了实现这一目标,我们提出了SnMpNet(语义Neighbourhood和混合预测网络),它包括两个新的损失,以占在测试过程中遇到的看不见的类和域。具体来说,我们引入了一种新的语义邻域损失,以弥合可见和不可见类之间的知识差距,并确保潜在的空间嵌入的不可见类是语义上有意义的,相对于其相邻的类。我们还在图像级以及数据的语义级引入了基于混�

ant-button 点击实践

好的,下面是 ant-button 点击实践的步骤: 1. 首先,在你的项目中安装 Ant Design UI 库,可以通过 npm 命令进行安装: ``` npm install antd --save ``` 2. 在你的代码中引入 antd 库和 antd 样式,示例代码如下: ```javascript import React from 'react'; import ReactDOM from 'react-dom'; import 'antd/dist/antd.css'; import { Button } from 'antd'; function handleCl

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

生成模型的反事实解释方法及其局限性

693694不能很好地可视化/解释非空间定位的属性,如大小、颜色等。此外,它们可以显示图像的哪些区域可以被改变以影响分类,但不显示它们应该如何被改变。反事实解释通过提供替代输入来解决这些限制,其中改变一小组属性并且观察到不同的分类结果。生成模型是产生视觉反事实解释的自然候选者,事实上,最近的工作已经朝着这个目标取得了进展在[31,7,32,1]中,产生了生成的反事实解释,但它们的可视化立即改变了所有相关属性,如图所示。二、[29]中提供的另一种相关方法是使用来自分类器的深度表示来以不同粒度操纵生成的图像然而,这些可能涉及不影响分类结果的性质,并且还组合了若干属性。因此,这些方法不允许根据原子属性及其对分类的影响来其他解释方法使用属性生成反事实,其中可以对所需属性进行完全或部分监督[10,5

mybatisplus如何用注解设置联合主键

Mybatis-Plus支持使用注解来设置联合主键,可以使用`@TableId`注解来设置主键,同时使用`value`属性和`type`属性来设置联合主键的字段和类型。示例代码如下: ```java @Data @TableName("user") public class User { @TableId(value = "id", type = IdType.AUTO) private Long id; @TableId(value = "username") private String username; @TableId(value = "