for k = 1:m for kk = 1:n if(imgray(k,kk)<30) Xout_image(k,kk) = 0; end end end

时间: 2024-02-10 10:59:06 浏览: 23
这段代码的作用是将输入的灰度图像(imgray)中所有像素值小于30的像素点赋值为0,生成一个输出图像(Xout_image)。具体来说,代码中使用了两个循环分别遍历输入图像的每一行和每一列,然后对于每个像素点,如果它的灰度值小于30,就将对应位置的输出图像像素值设为0。最终得到的输出图像将与输入图像有相同的大小和分辨率,但是所有灰度值小于30的像素点都被变成了黑色。
相关问题

X=reshape(double(imgray)/256.0,m*n,1); for i=1:m*n if(X(i)==0 ||X(i)<30/256.0) Xout(i)=0; else p1=w1*normpdf(X(i),mu1,sigma1)/(w1*normpdf(X(i),mu1,sigma1)+w2*normpdf(X(i),mu2,sigma2)); p2=1-p1; if(p1>=p2) Xout(i)=1; else Xout(i)=0.5; end end end Xout_image=reshape(Xout,m,n); for k = 1:m for kk = 1:n if(imgray(k,kk)<30) Xout_image(k,kk) = 0; end end end figure('NumberTitle', 'on', 'Name', '灰度分类'), imshow(Xout_image),title('Gray\_processing');

这段代码是基于高斯分布模型,对图像进行阈值分割,将灰度大于30的像素点置为白色(1),灰度小于等于30的像素点置为黑色(0),并将灰度在30和128之间的像素点置为灰色(0.5)。 具体来说,该段代码首先将原始图像(imgray)转换为一个列向量X,并将其归一化,然后遍历X中的每个元素,判断其是否为0或小于30/256,如果是,则将相应的输出Xout置为0,否则,根据贝叶斯公式计算该像素点属于两个类别的概率p1和p2,进而判断其分类结果Xout。具体来说,如果p1>=p2,则将Xout置为1,否则将其置为0.5。 然后,该段代码通过reshape函数,将Xout转换为图像格式,并遍历图像的所有像素点,将灰度小于30的像素点的分类结果置为0,即黑色。 最后,通过imshow函数显示分割后的图像,并将图像命名为“灰度分类”。 该段代码的目的是基于高斯分布模型,对图像进行自适应分割,实现对灰度值在30和128之间的像素点的精细分类,从而得到更加准确的分割结果。

imagbwhigh=imbinarize(imgray,128/255.0); imagbwlow=~imagbwhigh&imbinarize(imgray,30/255.0); k_num = 1; k_num1 = 1; for k = 1:m for kk = 1:n if(imgray(k,kk)>30) if(imagbwhigh(k,kk)>0) sample_gray1(k_num)=double(imgray(k,kk))/256.0; k_num = k_num + 1; else sample_gray2(k_num1)=double(imgray(k,kk))/256.0; k_num1 = k_num1 + 1; end end end end

这段代码是对图像进行阈值分割,将灰度大于128的像素点置为白色(1),灰度小于等于128的像素点置为黑色(0),并且将灰度大于30且被标记为白色的像素点的灰度值存入sample_gray1数组中,将灰度大于30但被标记为黑色的像素点的灰度值存入sample_gray2数组中。 具体来说,该段代码首先将原始图像(imgray)转换为二值图像(imagbwhigh)。然后,通过对灰度图像(imgray)进行二值化操作,将灰度大于128的像素点置为白色(1),灰度小于等于128的像素点置为黑色(0),并将结果存入imagbwlow数组中。接下来,通过遍历图像的所有像素点,判断其灰度值是否大于30,如果是,则将其灰度值存入相应的数组中。 最后,该段代码通过k_num和k_num1两个计数器来计算sample_gray1和sample_gray2数组中灰度值的个数。
阅读全文

相关推荐

优化以下代码% 设置参数 t = 0.03; % 时间范围,计算到0.03秒 x = 1; y = 1; % 空间范围,0-1米 m = 320; % 时间t方向分320个格子 n = 32; % 空间x方向分32个格子 k = 32; % 空间y方向分32个格子 ht = t / (m - 1); % 时间步长dt hx = x / (n - 1); % 空间步长dx hy = y / (k - 1); % 空间步长dy hx2 = hx^2; hy2 = hy^2; % 初始化矩阵 u = zeros(m, n, k); % 设置边界 [x, y] = meshgrid(0:hx:1, 0:hy:1); u(1, :, :) = sin(4 * pi * x) + cos(4 * pi * y); % 按照公式进行差分 for ii = 1 : m - 1 u_prev = u(ii, :, :); u_next = u_prev; for kk = 2 : k - 1 u_prev_k = u_prev(:, kk); u_next_k = u_next(:, kk); u_prev_kk_1 = u_prev(:, kk + 1); u_prev_kk_1(1) = u_prev_k(1); u_prev_kk_1(end) = u_prev_k(end); u_prev_kk_2 = u_prev(:, kk - 1); u_prev_kk_2(1) = u_prev_k(1); u_prev_kk_2(end) = u_prev_k(end); A = diag(ones(n - 3, 1), 1) - 2 * diag(ones(n - 2, 1)) + diag(ones(n - 3, 1), -1); B = diag(ones(n - 3, 1), 1) + diag(ones(n - 3, 1), -1) + 2 * diag(ones(n - 2, 1)); C = diag(ones(n - 3, 1), 1) - 2 * diag(ones(n - 2, 1)) + diag(ones(n - 3, 1), -1); D = u_prev_kk_1 / hy2; E = u_prev_kk_2 / hy2; F = u_prev_k / hx2 + 1 / ht; G = u_prev_k / hx2 - 1 / ht; H = u_prev_kk_1 / hy2 + u_prev_kk_2 / hy2 + 1 / ht; I = u_prev_kk_1 / hy2 + u_prev_kk_2 / hy2 - 1 / ht; K = B - ht * F; L = B + ht * G; M = A + ht * D; N = C - ht * E; u_next(:, 2 : end - 1, kk) = thomas(K, M, N, H); u_next(:, 2 : end - 1, kk) = thomas(L, N, M, I); end u(ii + 1, :, :) = u_next; end % 绘制图像 parfor i = 1 : m figure(1); mesh(x, y, reshape(u(i, :, :), [n k])); axis([0 1 0 1 -2 2]); end % Thomas 算法求解三对角线性方程组 function x = thomas(A, B, C, D) n = length(D); for k = 2 : n m = A(k) / B(k - 1); B(k) = B(k) - m * C(k - 1); D(k) = D(k) - m * D(k - 1); end x(n) = D(n) / B(n); for k = n - 1 : -1 : 1 x(k) = (D(k) - C(k) * x(k + 1)) / B(k); end end

function [prr,pcr,p]=glws(x,m,t) %函数名为关联维数的首字母,用于单串序列,多串到glsw; %x为要分析的数据; %x=xlsread('d:\matworks\dbin.xls'); [m1,n1]=size(x); n=m1; [mm1,mm]=size(m); p=zeros(mm,2); %存放拟合系数的矩阵; rr=zeros(20,mm);%rr是相当于筛子的那个距离,存放的是对数; cr=zeros(20,mm);%cr是小于筛子距离的距离个数,存放的是对数; %prr=zeros(20,mm);%rr是相当于筛子的那个距离,存放的是对数; %pcr=zeros(20,mm);%cr是小于筛子距离的距离个数,存放的是对数; scope=zeros(19,1); msr=zeros(19,1); for k=1:mm tt=0; nm=n-(m(k)-1)*t;%Nm为列数; nr=(nm-1)*nm/2;%Nr为距离的总个数; juli=zeros(nr,1);%全部距离搞成一列的长矩阵; r=zeros(nm,nm);%各列之间距离矩阵; y=zeros(m(k),nm);%重构相矩阵的值yij; for j=1:nm for i=1:m(k) y(i,j)=x(j+(i-1)t); end end for i=1:nm-1 for j=i+1:nm for kk=1:m(k) r(i,j)=r(i,j)+(y(kk,j)-y(kk,i))^2; end r(i,j)=sqrt(r(i,j)); tt=tt+1; juli(tt)=r(i,j); end end %进行r和cr个数的计算; rmin=min(juli); rmax=max(juli); for i=1:20 %每次把距离间隔分20分来慢慢加; rr(i,k)=(rmax-rmin)(i+1)/21; %距离取法值得研究一下; for j=1:nr if juli(j)<=rr(i,k) cr(i,k)=cr(i,k)+1; end end rr(i,k)=log(rr(i,k)); cr(i,k)=log(cr(i,k)/nr); end %rr=rr'; tt=0; for i=1:19 scope(i)=(cr(i+1,k)-cr(i,k))/(rr(i+1,k)-rr(i,k));%每点的斜率; tt=tt+scope(i); plot(i,scope(i),'-bd'),hold on; end tt=tt/19;%各相邻点间斜率平均值; tshold=(max(scope)-min(scope))/2;%threshold,阈值; for i=1:19 msr(i)=abs(scope(i)-tt); %各斜率与平均值的均方根,mean square root; end tt=0; for i=2:18 if (msr(i-1)>tshold & msr(i+1)>tshold)|(msr(i-1)<0.001 & msr(i+1)<0.001) continue else tt=tt+1; prr(tt)=rr(i,k);%符合条件的; pcr(tt)=cr(i,k); end end p(k,1:2)=polyfit(prr,pcr,1);%线性拟合,p为两个数,p1为斜率,p2为截距; end 解释一下这段代码

clc clf clear all; tic Nt = 1; G = 4; N = 20; %number of RIS Ng = N/G; Nr = 3; %number of receive antenna It = 80000; M = 4; B = log2(G) + log2(M); W = 8; snr = -10:2:12; %signal-to-noise rate sigma = sqrt(1./(10 .^ (snr / 10 )) ); %sigma MPSK = pskmod(0:M-1,M); %Q = diag([chirp_table{1,chirp_nck(randi(size(chirp_nck,1)),:)}]) %Q=blkdiag(Fi_table{1},Fi_table{4},Fi_table{9},Fi_table{11}); %Q=diag(reshape(hadamard_code,1,K*N));%blkdiag(Fi_table{1},Fi_table{1},Fi_table{1}); diag([1 -1 1 -1 1 1 -1 -1]) for ii = 1:size(sigma,2) %parallel computing errorBits = 0; snr(ii) tic parfor jj = 1 : It h1=(randn(N,Nt)+1j*randn(N,Nt))/sqrt(2); h2=(randn(Nr,N)+1j*randn(Nr,N))/sqrt(2); hd=(randn(Nr,Nt)+1j*randn(Nr,Nt))/sqrt(2); Q = zeros(N,N,G); for kk = 1:G Q((kk-1)*Ng+1:kk*Ng,(kk-1)*Ng+1:kk*Ng,kk)=diag(exp(1j*2*pi*rand(1,Ng))); end for uu = 1:W inputIndex_group = randi(G); inputIndex_psk = randi(M); Q_choose = Q(:,:,inputIndex_group); St = MPSK(inputIndex_psk); V = (randn(Nr,1 ) + 1j*randn(Nr,1) ) ./sqrt(2) .*sigma(ii); %noise matrix Yt = (h2*Q_choose*h1+hd) * St + V; dis = zeros(G,M); for mm = 1:G for nn = 1:M dis(mm,nn) = norm(Yt-(h2*Q(:,:,mm)*h1+hd)*MPSK(nn),"fro"); end end [outputIndex_group,outputIndex_psk] = find(dis== min(min(dis))); %output the decode index errorBits = errorBits + sum( de2bi( inputIndex_group - 1 , log2(G)) ~= de2bi( outputIndex_group -1 , log2(G)) ); %sum of error Bits errorBits = errorBits + sum( de2bi( inputIndex_psk - 1 , log2(M)) ~= de2bi( outputIndex_psk -1 , log2(M)) ); end end toc bers(ii) = errorBits / (It*(W)* B); end toc figure('name','result'); semilogy(snr,bers,color='k',Marker='square',LineStyle='-',LineWidth=2) grid on set(gca, 'LineWidth',1) legend('RM,K=4,N=20,Nr=3,M=4') xlabel("SNR [dB]"); ylabel("BER") set(gcf,'color','w');都用到了什么算法

大家在看

recommend-type

RK eMMC Support List

RK eMMC Support List
recommend-type

UD18415B_海康威视信息发布终端_快速入门指南_V1.1_20200302.pdf

仅供学习方便使用,海康威视信息发布盒配置教程
recommend-type

qt mpi程序设计

qt中使用mpi进行程序设计,以pi的计算来讲解如何使用mpi进行并行程序开发
recommend-type

考研计算机408历年真题及答案pdf汇总来了 计算机考研 计算机408考研 计算机历年真题+解析09-23年

408计算机学科专业基础综合考研历年真题试卷与参考答案 真的很全!2009-2023计算机408历年真题及答案解析汇总(pdf 2009-2023计算机考研408历年真题pdf电子版及解析 2023考研408计算机真题全解 专业408历年算题大全(2009~2023年) 考研计算机408历年真题及答案pdf汇总来了 计算机考研 计算机408考研 计算机历年真题+解析09-23年 408计算机学科专业基础综合考研历年真题试卷与参考答案 真的很全!2009-2023计算机408历年真题及答案解析汇总(pdf 2009-2023计算机考研408历年真题pdf电子版及解析 2023考研408计算机真题全解 专业408历年算题大全(2009~2023年) 考研计算机408历年真题及答案pdf汇总来了 计算机考研 计算机408考研 计算机历年真题+解析09-23年 408计算机学科专业基础综合考研历年真题试卷与参考答案 真的很全!2009-2023计算机408历年真题及答案解析汇总(pdf 2009-2023计算机考研408历年真题pdf电子版及解析 2023考研408计算机真题全解 专业4
recommend-type

应用手册 - SoftMove.pdf

ABB机器人的SoftMove手册,本手册是中文版,中文版,中文版,重要的事情说三遍,ABB原版手册是英文的,而这个手册是中文的。

最新推荐

recommend-type

基于STM32单片机的激光雕刻机控制系统设计-含详细步骤和代码

内容概要:本文详细介绍了基于STM32单片机的激光雕刻机控制系统的设计。系统包括硬件设计、软件设计和机械结构设计,主要功能有可调节激光功率大小、改变雕刻速率、手动定位、精确雕刻及切割。硬件部分包括STM32最小系统、步进电机驱动模块、激光发生器控制电路、人机交互电路和串口通信电路。软件部分涉及STM32CubeMX配置、G代码解析、步进电机控制、激光功率调节和手动定位功能的实现。 适合人群:对嵌入式系统和激光雕刻机感兴趣的工程师和技术人员。 使用场景及目标:① 适用于需要高精度激光雕刻的应用场合;② 为开发类似的激光雕刻控制系统提供设计参考。 阅读建议:本文提供了详细的硬件和软件设计方案,读者应结合实际应用场景进行理解,重点关注电路设计和代码实现。
recommend-type

白色简洁风格的前端网站模板下载.zip

白色简洁风格的前端网站模板下载.zip
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

传感器集成全攻略:ICM-42688-P运动设备应用详解

![传感器集成全攻略:ICM-42688-P运动设备应用详解](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-ba33fcfbde1d1207d7b8fe45b6ea58d0.png) # 摘要 ICM-42688-P传感器作为一种先进的惯性测量单元,广泛应用于多种运动设备中。本文首先介绍了ICM-42688-P传感器的基本概述和技术规格,然后深入探讨了其编程基础,包括软件接口、数据读取处理及校准测试。接着,本文详细分析了该传感器在嵌入式系统、运动控制和人机交互设备中的实践应用,并且探讨了高级功能开发,
recommend-type

matlab 中实现 astar

在MATLAB中,A*算法是一种用于求解最短路径问题的启发式搜索算法。它适用于带权重的图或网格,特别是当有大量潜在解决方案时,比如迷宫寻路问题。以下是使用MATLAB基本步骤来实现A*算法: 1. **数据结构准备**: - 创建一个二维数组表示地图,其中0代表可以通行的节点,其他值代表障碍物或边界。 - 定义一个队列(通常使用`prioritiesqueue`)来存储待探索的节点及其信息。 2. **初始化**: - 设定起始节点(start),目标节点(goal),以及每个节点的初始g值(从起点到该点的实际代价)和f值(g值加上估计的h值,即启发函数)。 3.