const char *p[]={ "", "D->TL", "T->i", "T-f", "L-l,x", "L->x", }; 1.消除左递归 2.构造First和Follow集合 3.构造LL(1)分析表 4.是不是LL(1)文法
时间: 2023-09-21 09:07:14 浏览: 78
1. 消除左递归
将文法改写为:
D -> TL
L -> xL'
L' -> ,xL' | ε
T -> i | f
2. 构造 First 和 Follow 集合
First(D) = {i, f}
First(T) = {i, f}
First(L) = {x}
First(L') = {,ε}
Follow(D) = {$}
Follow(L) = {)}
Follow(L') = {)}
Follow(T) = {,)}
3. 构造 LL(1) 分析表
| | i | f | x | , | ( | ) | $ |
|---|---|---|---|---|---|---|---|
| D | 1 | 1 | | | | | |
| L | | | 3 | | 2 | 2 | |
| L' | | | 4 | 5 | | 6 | 6 |
| T | 7 | 8 | | | | | |
其中,1 表示 D -> TL,2 表示 L -> xL',3 表示 L -> xL',4 表示 L' -> ,xL',5 表示 L' -> ε,7 表示 T -> i,8 表示 T -> f。
4. 判断是否为 LL(1) 文法
通过构造的 LL(1) 分析表可以看出,每个非终结符的每个产生式的 First 集合两两不相交,因此这是一个 LL(1) 文法。
相关问题
const char *p[]={ "", "D->TL", "T->i", "T->f", "L->L,x", "L->x", }; 1.消除左递归 2.构造First和Follow集合 3.构造LL(1)分析表 4.是不是LL(1)文法
1. 消除左递归:
把产生式改写为如下形式:
D -> TL
T -> i | f
L -> xL'
L' -> ,L' | ε
2. 构造First和Follow集合:
First(D) = {i, f}
First(T) = {i, f}
First(L) = {x}
First(L') = {, ε}
Follow(D) = {$}
Follow(T) = {,, $}
Follow(L) = {,, $}
Follow(L') = {,, $}
3. 构造LL(1)分析表:
| | i | f | x | , | $ |
|---|---|---|---|---|---|
| D | 1 | 1 | | | |
| T | 2 | 3 | | | |
| L | | | 5 | | |
| L' | | | | 4 | 4 |
4. 判断是否为LL(1)文法:
对于每个非终结符的每个产生式,它们的First集合必须没有交集。同时,对于每个非终结符A和终结符a,如果A能够推出ε,那么它的Follow集合和a的First集合必须没有交集。根据LL(1)分析表可以看出,这个文法是LL(1)文法。
const char *p[]={ "", "D->TL", "T->i", "T->f", "L->L,x", "L->x" }; 1.消除左递归 2.构造First和Follow集合 3.构造LL(1)分析表 4.是不是LL(1)文法 5.编程实现
1. 消除左递归:
原始文法为:
D -> TL
T -> i | f
L -> L,x | x
将其转化为无左递归的文法:
D -> TL
T -> iR | fR
R -> ,xR | ε
L -> xS
S -> R | ,xS
2. 构造First和Follow集合:
First(D) = {i, f}
First(T) = {i, f}
First(R) = {ε, ,}
First(L) = {x}
First(S) = {ε, ,}
Follow(D) = {$}
Follow(T) = {L}
Follow(R) = {L}
Follow(L) = {)}
Follow(S) = {)}
3. 构造LL(1)分析表:
| i | f | x | , | ( | ) | $
-----+-------+-------+-------+-------+-------+-------+-------
D | TL | TL | | | | |
T | iR | fR | | | | |
R | | | ε | ,xR | ε | ε | ε
L | | | xS | | | |
S | ε | ε | | ,xS | | ) | )
4. 是否是LL(1)文法:
通过观察LL(1)分析表可以发现,每个非终结符的每个产生式的First集合与Follow集合之间没有交集,因此该文法是LL(1)文法。
5. 编程实现:
以下是该文法的LL(1)分析程序的示例代码(使用C++语言实现):
```
#include <iostream>
#include <string>
using namespace std;
const char *p[] = {"", "D->TL", "T->iR", "T->fR", "R->,xR", "R->ε", "L->xS", "S->R", "S->,xS", "S->ε"};
char M[6][7][3] = {
{"", "", "", "", "", "", ""},
{"TL", "TL", "", "", "", "", ""},
{"iR", "fR", "", "", "", "", ""},
{"", "", "ε", ",xR", "ε", "ε", "ε"},
{"", "", "xS", "", "", "", ""},
{"", "", "ε", "", "", "", ""},
};
string input;
int getVN(char c) {
if (c == 'D') return 1;
if (c == 'T') return 2;
if (c == 'R') return 3;
if (c == 'L') return 4;
if (c == 'S') return 5;
return 0;
}
int getVT(char c) {
if (c == 'i') return 0;
if (c == 'f') return 1;
if (c == 'x') return 2;
if (c == ',') return 3;
if (c == '(') return 4;
if (c == ')') return 5;
if (c == '$') return 6;
return -1;
}
void analyze() {
input += '$';
int i = 0, j = 0, k = 0;
char stack[100] = {'$', 'D'};
while (stack[0] != '$') {
char c = stack[0];
if (c == input[i]) {
i++;
for (int l = 0; l < k; l++) {
stack[l] = stack[l + 1];
}
k--;
} else if (getVN(c)) {
int vn = getVN(c);
int vt = getVT(input[i]);
if (M[vn][vt][0] == '\0') {
cout << "Error!" << endl;
return;
}
for (int l = 0; l < k; l++) {
stack[l] = stack[l + 1];
}
k--;
if (M[vn][vt][0] != 'ε') {
for (int l = strlen(M[vn][vt]) - 1; l >= 0; l--) {
stack[k++] = M[vn][vt][l];
}
}
} else {
cout << "Error!" << endl;
return;
}
}
cout << "Success!" << endl;
}
int main() {
cout << "Please input the string to be analyzed:" << endl;
cin >> input;
analyze();
return 0;
}
```
阅读全文