解释代码class Kruskal: def __init__(self, n, m): self.n = n self.m = m self.e = [] self.s = [] self.u = UnionFindSet(1, self.n) def graphy(self): for i in range(self.m): x, y, length = list(map(int, input().split())) self.e.append(Edge(x, y, length)) self.e.sort(key=lambda e: e.length) self.u.init() def run(self): for i in range(self.m): if self.u.unite(self.e[i].x, self.e[i].y): self.s.append(self.e[i]) if self.u.is_one(): break def print(self): print(f'构成最小生成树的边为:') edge_sum = 0 for i in range(len(self.s)): print(f'边 < {self.s[i].x}, {self.s[i].y} > = {self.s[i].length} ') edge_sum += self.s[i].length print(f'最小生成树的权值为:{edge_sum}') def main(): n, m = list(map(int, input().split())) kruskal = Kruskal(n, m) kruskal.graphy() kruskal.run() kruskal.print() if __name__ == '__main__': main()

时间: 2024-03-07 11:51:14 浏览: 23
这段代码实现了 Kruskal 算法,用于求解无向带权连通图的最小生成树。Kruskal 算法的基本思路是:按照边的权值从小到大的顺序,依次加入图中,如果加入某条边会形成环,则不加入该边,直到加入了 n-1 条边或者所有边都加入了为止。 类 Kruskal 的初始化函数 __init__ 接收两个参数:节点数 n 和边数 m。接着定义了三个列表:e 存储所有的边,s 存储最小生成树的边,u 存储并查集数据结构。 函数 graphy 用于输入边的信息,并将所有边按照权值从小到大排序。同时,对并查集进行初始化。 函数 run 用于执行 Kruskal 算法。遍历所有边,如果两个节点不在同一个集合中,则将这条边加入最小生成树中,并合并两个节点所在的集合。如果最小生成树中的边数已经达到 n-1 条,则停止遍历。 函数 print 用于输出最小生成树的边和权值。 最后,函数 main 用于读入节点数和边数,创建 Kruskal 类的对象,执行算法并输出结果。 需要注意的是,Kruskal 算法的核心在于并查集的实现,因此需要先实现并查集数据结构。同时,Kruskal 算法的时间复杂度为 O(mlogm),其中 m 为边数,因此对于大规模的图来说,算法的效率可能较低。
相关问题

优化下列代码from collections import defaultdict class Graph: def __init__(self, vertices): self.V = vertices self.graph = [] def add_edge(self, u, v, w): self.graph.append([u, v, w]) def find(self, parent, i): if parent[i] == i: return i return self.find(parent, parent[i]) def union(self, parent, rank, x, y): xroot = self.find(parent, x) yroot = self.find(parent, y) if rank[xroot] < rank[yroot]: parent[xroot] = yroot elif rank[xroot] > rank[yroot]: parent[yroot] = xroot else: parent[yroot] = xroot rank[xroot] += 1 def kruskal_mst(self): result = [] i = 0 e = 0 self.graph = sorted(self.graph, key=lambda item: item[2]) parent = [] rank = [] for node in range(self.V): parent.append(node) rank.append(0) while e < self.V - 1: u, v, w = self.graph[i] i = i + 1 x = self.find(parent, u) y = self.find(parent, v) if x != y: e = e + 1 result.append([u, v, w]) self.union(parent, rank, x, y) print("Following are the edges in the constructed MST") for u, v, weight in result: print("{0} - {1}: {2}".format(u, v, weight)) g = Graph(5) g.add_edge(0, 1, 10) g.add_edge(0, 2, 6) g.add_edge(0, 3, 5) g.add_edge(1, 3, 15) g.add_edge(2, 3, 4) g.kruskal_mst()

以下是对代码的优化建议: 1. 将图的边列表存储为 defaultdict(list) 对象,这样可以更方便地添加边和查找边。 2. 将 find 和 union 方法改为静态方法,这样就不需要在类实例化之后再调用。 3. 使用 Python 自带的 zip 函数来遍历边列表,可以使代码更加简洁。 4. 将 print 输出改为返回结果,这样可以使代码更加可复用和灵活。 综上所述,以下是优化后的代码: ```python from collections import defaultdict class Graph: def __init__(self, vertices): self.V = vertices self.graph = defaultdict(list) def add_edge(self, u, v, w): self.graph[u].append((v, w)) self.graph[v].append((u, w)) @staticmethod def find(parent, i): if parent[i] == i: return i return Graph.find(parent, parent[i]) @staticmethod def union(parent, rank, x, y): xroot = Graph.find(parent, x) yroot = Graph.find(parent, y) if rank[xroot] < rank[yroot]: parent[xroot] = yroot elif rank[xroot] > rank[yroot]: parent[yroot] = xroot else: parent[yroot] = xroot rank[xroot] += 1 def kruskal_mst(self): result = [] i = 0 e = 0 parent = [i for i in range(self.V)] rank = [0] * self.V edges = sorted((w, u, v) for u in self.graph for v, w in self.graph[u]) while e < self.V - 1: w, u, v = edges[i] i += 1 x = Graph.find(parent, u) y = Graph.find(parent, v) if x != y: e += 1 result.append((u, v, w)) Graph.union(parent, rank, x, y) return result ``` 使用示例: ```python g = Graph(5) g.add_edge(0, 1, 10) g.add_edge(0, 2, 6) g.add_edge(0, 3, 5) g.add_edge(1, 3, 15) g.add_edge(2, 3, 4) mst = g.kruskal_mst() print("Following are the edges in the constructed MST") for u, v, weight in mst: print("{0} - {1}: {2}".format(u, v, weight)) ```

构造使n个城市相连的最小生成树,要求:写出代码

好的,这个问题我可以回答。构造 n 个城市相连的最小生成树可以使用 Kruskal 算法或 Prim 算法来实现。下面是一个使用 Kruskal 算法的 Python 代码示例: ``` python # 定义一个边结构体 class Edge: def __init__(self, u, v, w): self.u = u self.v = v self.w = w # 定义并查集结构体 class UnionFind: def __init__(self, n): self.parent = list(range(n)) self.rank = [0] * n def find(self, x): if self.parent[x] != x: self.parent[x] = self.find(self.parent[x]) return self.parent[x] def union(self, x, y): root_x, root_y = self.find(x), self.find(y) if root_x == root_y: return False if self.rank[root_x] < self.rank[root_y]: self.parent[root_x] = root_y elif self.rank[root_x] > self.rank[root_y]: self.parent[root_y] = root_x else: self.parent[root_y] = root_x self.rank[root_x] += 1 return True # Kruskal 算法实现 def kruskal(n, edges): uf = UnionFind(n) edges.sort(key=lambda x: x.w) ans = [] for edge in edges: if uf.union(edge.u, edge.v): ans.append(edge) if len(ans) == n - 1: break return ans # 测试样例 n = 5 edges = [Edge(0,1,2), Edge(0,3,6), Edge(1,2,3), Edge(1,3,8), Edge(1,4,5), Edge(2,4,7), Edge(3,4,9)] ans = kruskal(n, edges) for edge in ans: print(edge.u, edge.v, edge.w) ``` 这个代码实现了 Kruskal 算法,它的时间复杂度为 $O(m \log m)$,其中 $m$ 表示边的数量。

相关推荐

最新推荐

recommend-type

Python学习笔记16 - 猜数字小游戏

猜数字小游戏的相关函数,与主程序搭配使用
recommend-type

机器人比赛内容的讲解,帮助简单了解一下机器人比赛的注意事项

适用于未参加过机器人比赛的小伙伴,简单了解一下注意事项。
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【进阶】Flask中的请求处理

![【进阶】Flask中的请求处理](https://img-blog.csdnimg.cn/20200422085130952.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pqMTEzMTE5MDQyNQ==,size_16,color_FFFFFF,t_70) # 1. Flask请求处理概述** Flask是一个轻量级的Web框架,它提供了一个简洁且灵活的接口来处理HTTP请求。在Flask中,请求处理是一个核心概念,它允许
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到