CV_RETR_EXTERNAL
时间: 2024-03-12 13:41:29 浏览: 129
CV_RETR_EXTERNAL是OpenCV中findContours函数的一个参数,用于指定轮廓检测的模式之一。CV_RETR_EXTERNAL表示只检测最外层的轮廓,即只返回最外层的轮廓信息,而不包括内部的孔洞或子轮廓。
在使用OpenCV进行轮廓检测时,可以通过设置不同的轮廓检测模式来获取不同级别的轮廓信息。CV_RETR_EXTERNAL是其中一种模式,它可以用于提取图像中的主要对象轮廓,忽略掉内部的孔洞或子轮廓。
相关问题
red_contours, _ = cv2.findContours(red_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) blue_contours, _ = cv2.findContours(blue_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) green_contours, _ = cv2.findContours(green_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) yellow_contours, _ = cv2.findContours(yellow_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
这段代码使用OpenCV库的`findContours`函数来检测每个颜色掩码中的轮廓。以下是代码示例:
```python
import cv2
red_contours, _ = cv2.findContours(red_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
blue_contours, _ = cv2.findContours(blue_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
green_contours, _ = cv2.findContours(green_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
yellow_contours, _ = cv2.findContours(yellow_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
```
在这个例子中,`findContours`函数接受三个参数:输入的二值图像、轮廓检索模式和轮廓近似方法。对于每个颜色掩码,我们分别使用`RETR_EXTERNAL`模式来检测外部轮廓,并使用`CHAIN_APPROX_SIMPLE`方法进行简单的轮廓近似。函数返回两个值,第一个是轮廓列表(在这里我们将其赋值给`red_contours`、`blue_contours`、`green_contours`和`yellow_contours`),第二个是层次结构(在这里我们使用下划线表示我们不关心它)。这样,你可以使用这些轮廓列表来进一步处理和分析检测到的颜色区域。
#include<iostream> #include<opencv2/opencv.hpp> #include <opencv2/core/core.hpp> #include<opencv2/highgui/highgui_c.h> #include <opencv2/imgproc/imgproc.hpp> using namespace std; using namespace cv; int main() { //Mat img = imread("cells.jpg", CV_LOAD_IMAGE_GRAYSCALE); // 读入灰度图像 Mat img; Mat img1 = imread("G:/图像处理/实验课设/实验课设5.31/cell3.png"); //cvtColor(img1, img, CV_BGR2GRAY); Mat img_blur; cvtColor(img1, img_blur, CV_BGR2GRAY); Mat img_thresh1; threshold(img_blur, img_thresh1, 0, 255, THRESH_BINARY_INV + THRESH_OTSU); // 二值化 Mat img_thresh; Mat element = getStructuringElement(MORPH_RECT, Size(35, 35), Point(-1, -1)); erode(img_thresh1, img_thresh, element); //morphologyEx(img_thresh1, img_thresh, MORPH_OPEN, kernel); imshow("FUSHI", img_thresh); vector<vector<Point>> contours; findContours(img_thresh, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE); // 寻找轮廓 //findContours(canny_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0)); Mat img_contours = Mat::zeros(img_thresh.size(), CV_8UC3); Scalar color(0, 0, 255); drawContours(img_contours, contours, -1, color); cout << "细胞个数:" << contours.size() << endl; imshow("去噪后的图像", img_blur); imshow("二值化后的图像", img_thresh); imshow("轮廓", img_contours); waitKey(0); return 0; } OpenCV2015版本 把element函数中size()创建滑动控件createTrackbar x64
根据您提供的代码,我理解您的问题是如何使用 createTrackbar 函数来调整 element 的大小。
首先,element 是一个矩阵,用于图像形态学操作。在您的代码中,它是使用以下代码创建的:
```
Mat element = getStructuringElement(MORPH_RECT, Size(35, 35), Point(-1, -1));
```
要在滑动条上调整 element 的大小,您需要使用 createTrackbar 函数创建滑动条,并根据滑动条的值更新 element 的大小。
以下是一个简单的例子,将 createTrackbar 用于调整 element 的大小:
```cpp
#include<iostream>
#include<opencv2/opencv.hpp>
#include<opencv2/core/core.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>
using namespace std;
using namespace cv;
int element_size = 35; // 初始大小
Mat element;
void on_trackbar(int, void*) {
element = getStructuringElement(MORPH_RECT, Size(element_size, element_size), Point(-1, -1));
}
int main() {
Mat img1 = imread("cell3.png");
Mat img_blur;
cvtColor(img1, img_blur, CV_BGR2GRAY);
Mat img_thresh1;
threshold(img_blur, img_thresh1, 0, 255, THRESH_BINARY_INV + THRESH_OTSU);
Mat img_thresh;
element = getStructuringElement(MORPH_RECT, Size(element_size, element_size), Point(-1, -1));
erode(img_thresh1, img_thresh, element);
namedWindow("FUSHI", WINDOW_NORMAL);
namedWindow("Trackbar", WINDOW_NORMAL);
createTrackbar("Element Size", "Trackbar", &element_size, 100, on_trackbar);
on_trackbar(element_size, 0);
while (true) {
imshow("FUSHI", img_thresh);
char c = waitKey(10);
if (c == 27) break;
}
return 0;
}
```
在这个例子中,我们使用了一个名为 "Trackbar" 的新窗口,并创建了一个名为 "Element Size" 的滑动条,将其最小值设置为 0,最大值设置为 100。我们还设置了一个回调函数 on_trackbar,每当滑动条的值发生变化时都会被调用。
在回调函数中,我们使用当前滑动条的值来更新 element 的大小,并在 "FUSHI" 窗口中显示处理后的图像。在主循环中,我们使用 waitKey 函数来等待用户按下 ESC 键或关闭窗口。
希望这可以帮助您解决问题。
阅读全文