灰色模型gm(1,n)模型matlab

时间: 2023-11-25 08:03:30 浏览: 46
灰色模型GM(1,n)是一种用于预测和分析灰色系统的数学模型。它适用于样本量较小、数据质量较差、缺乏可靠统计数据的情况下,通过对收集到的数据序列进行灰色处理,实现数据的预测和分析。 GM(1,n)模型的实现通常使用matlab软件来完成,以下是GM(1,n)模型的matlab实现步骤: 1. 数据预处理:将原始数据进行归一化处理,去除数据中的异常值和噪声数据。 2. 累加生成序列:将预处理后的数据进行累加运算,得到累加生成序列。 3. 构造矩阵:根据累加生成序列,构造数据矩阵。 4. 参数估计:通过最小二乘法或其他优化算法,估计灰色模型的参数。 5. 模型检验:使用模型得到的预测值与实际值进行对比,评估模型的拟合程度。 6. 模型预测:使用得到的灰色模型进行未来数值的预测。 在matlab中,可以使用自定义函数来实现GM(1,n)模型。通常,自定义函数包含参数估计和模型预测两个部分。参数估计部分使用matlab中的最小二乘法函数或其他优化算法函数,来计算灰色模型的参数。模型预测部分则是利用估计的参数进行未来数值的预测。 总结起来,GM(1,n)模型是一种用于预测和分析灰色系统的数学模型,通过使用matlab软件进行参数估计和模型预测,可以实现对数据序列的预测和分析。
相关问题

gm1n灰色预测模型matlab

灰色GM(1,N)模型是一种用于描述多个变量之间关系和发展的预测模型。该模型以自变量的发展动态为基础,将因变量表现为自变量的函数,以达到预测观察对象的目的。在MATLAB中,可以通过以下步骤实现该模型的预测: 1. 读取数据:使用xlsread函数读取数据文件,将需要预测的因变量存储为A,自变量存储为x0。 2. 紧邻均值生成序列:根据原始数据计算紧邻均值生成序列Z,其中Z(i)为xi(1)的紧邻均值。 3. 原始数据累加:使用双重循环将原始数据一次累加,得到xi(1)的值。 4. 构建GM(1,N)模型:根据公式建立GM(1,N)模型,其中a为常数项,b为参数向量。 5. 预测值计算:使用模型参数计算预测值F,其中F(k)为第k年的预测值。 6. 还原原序列:将预测值与前一年的预测值做差,得到还原原序列的预测数据G。 7. 绘制图表:使用plot函数将真实值和预测值绘制成曲线图,以展示预测结果。 下面是MATLAB代码示例: ```matlab clc; clear all; [num] = xlsread('C:\Users\Administrator\Desktop\G(1,n)\2011-2018 年地铁运营事故原因因素数据.xlsx')'; A = num(:, 1)'; x0 = num(:, 2:10)'; [n, m] = size(x0); AGO = cumsum(A); T = 1; x1 = zeros(n, m, T); for k = 2:m Z(k) = (AGO(k) - AGO(k-1)) / 2; end for i = 1:n for j = 1:m for k = 1:j x1(i, j) = x1(i, j) * x0(i, k); end end end x11 = x1(:, 1:m); X = x1(:, 2:m)'; Yn = A; Yn(1) = []; Yn = Yn'; Z = Z(:, 2:m); B = [-Z', X]; C = ((B' * B) \ (B' * Yn))'; a = C(1); b = C(:, 2:n-1); F = []; F(1) = A(1); u = zeros(1, m); for i = 1:m for j = 1:n u(i) = u(i) + (b(j) * x11(j, i)); end end for k = 2:m F(k) = (A(1) - u(k) / a) * exp(-a * (k-1)) + u(k) / a; end G = []; G(1) = A(1); for k = 2:m G(k) = F(k) - F(k-1); end t1 = 2011:2011+m-1; t2 = 2011:2011+m-1; plot(t1, A, 'bo--'); hold on; plot(t2, G, 'r*-'); title('G(1,N)预测结果'); xlabel('年份'); ylabel('事故数量'); legend('真实值', '预测值'); ``` 如果需要使用灰色GM(1,N)模型进行预测,可以按照上述步骤将数据导入MATLAB并运行代码即可。需要注意的是,根据具体需求,你可以根据自己的数据进行调整,以获得更准确的预测结果。

灰色预测模型gm(1,n)matlab

灰色预测模型GM(1, N)是一种基于灰色理论的时间序列预测方法,适用于具有较强趋势特征的数据。它通过建立灰色微分方程来模拟和预测时间序列的发展趋势。 在MATLAB中,我们可以使用gm(1, N)函数来实现灰色预测模型。 首先,我们需要准备要进行预测的时间序列数据。然后,通过调用gm(1, N)函数,将时间序列数据作为输入参数传递给函数。 下面是一个简单的示例代码: ```matlab % 准备时间序列数据 - 以X为例 X = [10, 20, 30, 40, 50, 60]; % 调用gm(1, N)函数进行灰色预测模型 [Y, ~] = gm(1, X); % 输出预测结果 disp(Y); ``` 在上面的代码中,我们首先准备了一个包含了时间序列数据的向量X。然后,通过调用gm(1, N)函数,并将X作为输入参数传递给函数。函数将返回预测结果的向量Y。 最后,我们使用disp函数将预测结果打印出来。 需要注意的是,由于灰色预测模型的结果可能会受到初始数据的影响,因此在实际应用中,我们通常需要进行数据归一化或标准化的处理,以获得更准确的预测结果。 灰色预测模型GM(1, N)在很多实际问题中都有较好的预测效果,如经济预测、股票市场预测等。它在处理具有较强趋势特征的时间序列数据时,能够较好地捕捉到序列的发展趋势和规律,为未来的预测提供参考依据。

相关推荐

最新推荐

recommend-type

灰色系统预测GM(1_1)模型及其Matlab实现

在Matlab中,可以使用以下代码实现灰色系统模型GM(1,1)的预测: ``` % 生成原始时间序列 X0 = [132, 92, 118, 130, 187, 207]; % 进行一次累加生成新的时间序列 X1 = cumsum(X0); % 建立白化形式的一阶微分方程 B...
recommend-type

1719378276792.jpg

1719378276792.jpg
recommend-type

GO婚礼设计创业计划:技术驱动的婚庆服务

"婚礼GO网站创业计划书" 在创建婚礼GO网站的创业计划书中,创业者首先阐述了企业的核心业务——GO婚礼设计,专注于提供计算机软件销售和技术开发、技术服务,以及与婚礼相关的各种服务,如APP制作、网页设计、弱电工程安装等。企业类型被定义为服务类,涵盖了一系列与信息技术和婚礼策划相关的业务。 创业者的个人经历显示了他对行业的理解和投入。他曾在北京某科技公司工作,积累了吃苦耐劳的精神和实践经验。此外,他在大学期间担任班长,锻炼了团队管理和领导能力。他还参加了SYB创业培训班,系统地学习了创业意识、计划制定等关键技能。 市场评估部分,目标顾客定位为本地的结婚人群,特别是中等和中上收入者。根据数据显示,广州市内有14家婚庆公司,该企业预计能占据7%的市场份额。广州每年约有1万对新人结婚,公司目标接待200对新人,显示出明确的市场切入点和增长潜力。 市场营销计划是创业成功的关键。尽管文档中没有详细列出具体的营销策略,但可以推断,企业可能通过线上线下结合的方式,利用社交媒体、网络广告和本地推广活动来吸引目标客户。此外,提供高质量的技术解决方案和服务,以区别于竞争对手,可能是其市场差异化策略的一部分。 在组织结构方面,未详细说明,但可以预期包括了技术开发团队、销售与市场部门、客户服务和支持团队,以及可能的行政和财务部门。 在财务规划上,文档提到了固定资产和折旧、流动资金需求、销售收入预测、销售和成本计划以及现金流量计划。这表明创业者已经考虑了启动和运营的初期成本,以及未来12个月的收入预测,旨在确保企业的现金流稳定,并有可能享受政府对大学生初创企业的税收优惠政策。 总结来说,婚礼GO网站的创业计划书详尽地涵盖了企业概述、创业者背景、市场分析、营销策略、组织结构和财务规划等方面,为初创企业的成功奠定了坚实的基础。这份计划书显示了创业者对市场的深刻理解,以及对技术和婚礼行业的专业认识,有望在竞争激烈的婚庆市场中找到一席之地。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【基础】PostgreSQL的安装和配置步骤

![【基础】PostgreSQL的安装和配置步骤](https://img-blog.csdnimg.cn/direct/8e80154f78dd45e4b061508286f9d090.png) # 2.1 安装前的准备工作 ### 2.1.1 系统要求 PostgreSQL 对系统硬件和软件环境有一定要求,具体如下: - 操作系统:支持 Linux、Windows、macOS 等主流操作系统。 - CPU:推荐使用多核 CPU,以提高数据库处理性能。 - 内存:根据数据库规模和并发量确定,一般建议 8GB 以上。 - 硬盘:数据库文件和临时文件需要占用一定空间,建议预留足够的空间。
recommend-type

字节跳动面试题java

字节跳动作为一家知名的互联网公司,在面试Java开发者时可能会关注以下几个方面的问题: 1. **基础技能**:Java语言的核心语法、异常处理、内存管理、集合框架、IO操作等是否熟练掌握。 2. **面向对象编程**:多态、封装、继承的理解和应用,可能会涉及设计模式的提问。 3. **并发编程**:Java并发API(synchronized、volatile、Future、ExecutorService等)的使用,以及对并发模型(线程池、并发容器等)的理解。 4. **框架知识**:Spring Boot、MyBatis、Redis等常用框架的原理和使用经验。 5. **数据库相
recommend-type

微信行业发展现状及未来发展趋势分析

微信行业发展现状及未来行业发展趋势分析 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信月活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。 微信作为流量枢纽,已经成为移动互联网的基础设施,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 中国的整体移动互联网人均单日使用时长已经较高水平。18Q1中国移动互联网的月度总时长达到了77千亿分钟,环比17Q4增长了14%,单人日均使用时长达到了273分钟,环比17Q4增长了15%。而根据抽样统计,社交始终占据用户时长的最大一部分。2018年3月份,社交软件占据移动互联网35%左右的时长,相比2015年减少了约10pct,但仍然是移动互联网当中最大的时长占据者。 争夺社交软件份额的主要系娱乐类App,目前占比达到约32%左右。移动端的流量时长分布远比PC端更加集中,通常认为“搜索下載”和“网站导航”为PC时代的流量枢纽,但根据统计,搜索的用户量约为4.5亿,为各类应用最高,但其时长占比约为5%左右,落后于网络视频的13%左右位于第二名。PC时代的网络社交时长占比约为4%-5%,基本与搜索相当,但其流量分发能力远弱于搜索。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【基础】安装MySQL:从下载到配置的完整指南

![python数据库编程合集](https://opengraph.githubassets.com/f5c38590c64cc0ea56ef235eff4fb5d5675e3c699a36ce388d1ffc280bd77681/mongodb/mongo-python-driver) # 1. MySQL数据库简介 MySQL是一种开源的关系型数据库管理系统(RDBMS),因其高性能、可扩展性和易用性而闻名。它广泛应用于各种规模的应用程序,从小型网站到大型企业系统。 MySQL使用结构化查询语言(SQL)来管理数据。SQL是一种标准化语言,允许用户通过简单的命令创建、读取、更新和删除
recommend-type

# 请根据注释在下面补充你的代码实现knn算法的过程 # ********** Begin ********** # # 对ndarray数组进行遍历

K-Nearest Neighbors (KNN) 算法是一种基于实例的学习方法,用于分类和回归分析。在代码中,实现KNN的基本步骤如下: ```python # 导入必要的库 import numpy as np from collections import Counter # 假设我们有一个训练数据集 X_train 和对应的标签 y_train X_train = ... # (n_samples, n_features) y_train = ... # (n_samples) # KNN函数实现 def knn_k(X_test, k, X_train, y_train):