x = x.permute(0, 2, 3, 1).contiguous()
时间: 2024-06-13 20:09:24 浏览: 146
这行代码的作用是将张量x的维度顺序进行调整,并将结果存储在一个新的张量中。具体来说,x.permute(0, 2, 3, 1)将x的维度从(0, 1, 2)变为(0, 2, 3, 1),即将原来的第3维移动到了最后。而.contiguous()则是为了保证新的张量在内存中是连续存储的,这样可以提高后续计算的效率。
举个例子,假设x的shape为(2, 3, 4, 5),那么x.permute(0, 2, 3, 1)的结果的shape为(2, 4, 5, 3),即将原来的第3维移动到了最后。而如果不加.contiguous(),则新的张量在内存中可能不是连续存储的,这会影响后续计算的效率。
```python
import torch
# 创建一个4维张量
x = torch.randn(2, 3, 4, 5)
# 调整维度顺序,并保证连续存储
y = x.permute(0, 2, 3, 1).contiguous()
print(x.shape) # 输出:torch.Size([2, 3, 4, 5])
print(y.shape) # 输出:torch.Size([2, 4, 5, 3])
```
相关问题
x = x.permute(0, 2, 3, 1).contiguous() x = torch.mul(weight_bn, x) x = x.permute(0, 3, 1, 2).contiguous()
这段代码是用于实现卷积神经网络中的批量归一化操作。首先,将输入张量x的维度进行调整,使得通道维度(C)在最后一个维度上。然后,对调整后的张量x进行乘法运算,乘以批量归一化层的权重(Weight_BN)。最后,再将张量x的维度调整回来,使得通道维度(C)重新回到第二个维度上。这三个步骤的目的是为了对输入张量x进行批量归一化,从而提升卷积神经网络的性能。
x = batch[k] if len(x.shape) == 3: x = x[..., None] x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()逐行解析
这段代码用于对输入数据进行预处理,包括以下几个步骤:
1. 取出batch中键值为k的数据,并将其赋值给变量x。这里的batch就是一个批次数据,包含多个样本,k可以是一个整数,也可以是一个字符串,用于指定要取出的数据。
2. 检查x的形状是否为3维,如果是,则在最后一维添加一个维度,使其成为4维张量。这个操作是为了兼容一些输入数据,例如灰度图像,它们的形状可能只有(高, 宽, 通道数)三维,而需要转换成(批大小, 通道数, 高, 宽)四维才能输入到神经网络中。
3. 将x的维度从(批大小, 高, 宽, 通道数)的顺序改为(批大小, 通道数, 高, 宽)的顺序。这个操作是因为在pytorch中,神经网络所接受的输入数据的维度顺序是(批大小, 通道数, 高, 宽),因此需要将x的维度顺序进行调整。
4. 将x转换为内存连续的张量,并将其类型转换为浮点型。这个操作是为了提高张量的访问速度,同时也是为了兼容一些不同类型的数据输入,例如RGB图像和灰度图像等。内存连续的张量能够提高访问速度是因为它的数据在内存中是按照连续的顺序排列的,这样在访问时就可以利用CPU的缓存机制,提高访问效率。而浮点型的数据则是神经网络所需要的标准数据类型,因为神经网络中大多数参数和激活函数都是基于浮点数计算的。
阅读全文