y_train = train_loader.dataset.train_labels.numpy()
时间: 2023-12-06 09:03:55 浏览: 226
`y_train = train_loader.dataset.train_labels.numpy()` 这行代码将训练数据集的标签转换为 NumPy 数组并赋值给变量 `y_train`。
在这行代码中,`train_loader` 是一个数据加载器对象,`train_loader.dataset` 是该加载器对应的数据集对象。`train_labels` 是数据集对象中的一个属性,它代表训练数据集的标签。
`numpy()` 是一个 NumPy 数组的方法,它将 PyTorch 张量(tensor)对象转换为 NumPy 数组。
通过这行代码,将训练数据集的标签转换为 NumPy 数组,并将结果赋值给变量 `y_train`。你可以在后续的代码中使用 `y_train` 来处理或分析训练数据集的标签数据。
相关问题
修改一下这段代码在pycharm中的实现,import pandas as pd import numpy as np from sklearn.model_selection import train_test_split import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim #from torchvision import datasets,transforms import torch.utils.data as data #from torch .nn:utils import weight_norm import matplotlib.pyplot as plt from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import cohen_kappa_score data_ = pd.read_csv(open(r"C:\Users\zhangjinyue\Desktop\rice.csv"),header=None) data_ = np.array(data_).astype('float64') train_data =data_[:,:520] train_Data =np.array(train_data).astype('float64') train_labels=data_[:,520] train_labels=np.array(train_data).astype('float64') train_data,train_data,train_labels,train_labels=train_test_split(train_data,train_labels,test_size=0.33333) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) start_epoch=1 num_epoch=1 BATCH_SIZE=70 Ir=0.001 classes=('0','1','2','3','4','5') device=torch.device("cuda"if torch.cuda.is_available()else"cpu") torch.backends.cudnn.benchmark=True best_acc=0.0 train_dataset=data.TensorDataset(train_data,train_labels) test_dataset=data.TensorDataset(train_data,train_labels) train_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True) test_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True)
修改后的代码如下所示:
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data
import matplotlib.pyplot as plt
from sklearn.metrics import precision_score, recall_score, f1_score, cohen_kappa_score
data_ = pd.read_csv(r"C:\Users\zhangjinyue\Desktop\rice.csv", header=None)
data_ = np.array(data_).astype('float64')
train_data = data_[:, :520]
train_labels = data_[:, 520]
train_data, _, train_labels, _ = train_test_split(train_data, train_labels, test_size=0.33333)
train_data = torch.Tensor(train_data)
train_labels = torch.LongTensor(train_labels)
train_data = train_data.reshape(-1, 1, 20, 26)
start_epoch = 1
num_epoch = 1
BATCH_SIZE = 70
Ir = 0.001
classes = ('0', '1', '2', '3', '4', '5')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.backends.cudnn.benchmark = True
best_acc = 0.0
train_dataset = data.TensorDataset(train_data, train_labels)
test_dataset = data.TensorDataset(train_data, train_labels)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
```
请注意,我做了以下修改:
1. 移除了不需要的导入语句。
2. 修复了变量名拼写错误。
3. 移除了重复的代码行。
4. 修正了 `torch.utils.data.DataLoader` 的拼写错误。
5. 修正了数据集分割时的变量名错误。
请根据你的实际需求进一步调整代码。
train_dataset = datasets.MNIST(root='D:\\dataset\\MNIST', train=True, download=True, transform=transform) train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size) test_dataset = datasets.MNIST(root='D:\\dataset\\MNIST', train=False, download=True, transform=transform) test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size) 如何将.mat形式的数据集加载为上述形式
要将.mat形式的数据集加载为PyTorch中的DataLoader格式,可以使用SciPy库中的`scipy.io.loadmat()`函数来加载.mat文件,然后将其转换为PyTorch的Tensor格式。具体代码如下:
```python
import scipy.io as sio
import torch
from torch.utils.data import DataLoader, TensorDataset
# 加载MNIST训练集和测试集
train_mat = sio.loadmat('train_data.mat')
test_mat = sio.loadmat('test_data.mat')
# 将MATLAB格式的数据转换为PyTorch的Tensor格式
train_data = torch.from_numpy(train_mat['train_data']).float()
train_labels = torch.from_numpy(train_mat['train_labels']).long()
test_data = torch.from_numpy(test_mat['test_data']).float()
test_labels = torch.from_numpy(test_mat['test_labels']).long()
# 创建PyTorch的TensorDataset
train_dataset = TensorDataset(train_data, train_labels)
test_dataset = TensorDataset(test_data, test_labels)
# 创建PyTorch的DataLoader
batch_size = 64
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
```
注意,由于MNIST数据集中的图像像素值在0到255之间,因此在将数据转换为PyTorch的Tensor格式时,需要将其除以255并转换为float类型。另外,在创建TensorDataset时,需要将标签转换为long类型,以便于后续计算交叉熵损失。
阅读全文