yolov5cbs和cbl
时间: 2023-12-15 12:32:55 浏览: 196
根据提供的引用内容,yolov5cbs和cbl是YOLOv5中的两个模块。
yolov5cbs是YOLOv5中的一个模块,它是由Conv、BN和SiLU三个基本模块组成的。其中,Conv是卷积层,BN是批量归一化层,SiLU是激活函数。yolov5cbs模块的作用是对输入数据进行特征提取和处理。
cbl是YOLOv5中的另一个模块,它是由Conv、BN和LeakyReLU三个基本模块组成的。其中,Conv是卷积层,BN是批量归一化层,LeakyReLU是激活函数。cbl模块的作用是对输入数据进行特征提取和处理。
下面是一个yolov5cbs和cbl的示例代码:
```python
import torch.nn as nn
# yolov5cbs模块
class YOLOv5CSPBlock(nn.Module):
def __init__(self, in_channels, out_channels, hidden_channels=None, residual_activation=nn.Identity()):
super().__init__()
if hidden_channels is None:
hidden_channels = out_channels
self.conv1 = nn.Conv2d(in_channels, hidden_channels, 1, bias=False)
self.bn1 = nn.BatchNorm2d(hidden_channels)
self.act = nn.SiLU(inplace=True)
self.conv2 = nn.Conv2d(hidden_channels, out_channels, 3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.res_conv = nn.Conv2d(in_channels, out_channels, 1)
self.res_bn = nn.BatchNorm2d(out_channels)
self.res_act = residual_activation
def forward(self, x):
y = self.conv1(x)
y = self.bn1(y)
y = self.act(y)
y = self.conv2(y)
y = self.bn2(y)
res = self.res_conv(x)
res = self.res_bn(res)
res = self.res_act(res)
return self.act(res + y)
# cbl模块
class CBL(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, groups=1):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, groups=groups, bias=False)
self.bn = nn.BatchNorm2d(out_channels)
self.act = nn.LeakyReLU(0.1, inplace=True)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.act(x)
return x
```
阅读全文