layers = [int(x) for x in module_def["layers"].split(",")] filters = sum([output_filters[1:][i] for i in layers]) modules.add_module(f"route_{module_i}", EmptyLayer())
时间: 2024-04-19 08:27:22 浏览: 38
这段代码用于计算模型中的滤波器数量并添加一个新的模块。首先,它使用逗号将字符串"layers"拆分成一个子字符串列表。然后,它使用列表推导式将每个子字符串转换为整数,并将结果存储在"layers"列表中。
接下来,代码使用切片操作"[1:]"来获取"output_filters"列表的子列表,从索引1开始到末尾。然后,它使用索引列表"layers"来选择相应的子列表元素,并对这些元素求和。
最后,代码使用"modules.add_module()"方法向模型中添加一个新的模块。这个新模块被命名为"route_{module_i}",并且使用"EmptyLayer()"作为模块的定义。
相关问题
下面给出一段详细代码:class CrnModel: def init(self, feature_num): self.feature_num = feature_num self.input_magnitude = layers.Input(shape=[128, feature_num], name='input_magnitude') model_output = self.structure_model() self.model = tf.keras.Model(inputs=self.input_magnitude, outputs=model_output) self.model.summary() def structure_model(self): layer_input = self.input_magnitude layer_output = layers.Conv1D(filters=64, padding='causal', dilation_rate=1, kernel_size=3, activation='relu')( layer_input) layer_output = layers.Conv1D(filters=64, padding='causal', dilation_rate=2, kernel_size=3, activation='relu')( layer_output) layer_output = layers.Conv1D(filters=64, padding='causal', dilation_rate=4, kernel_size=3, activation='relu')( layer_output) layer_output = layers.Conv1D(filters=64, kernel_size=1, activation='linear')(layer_output) layer_output = layers.Conv1D(filters=257, kernel_size=1, activation='relu')(layer_output) return layer_output。请你给出详细解释和注释
这是一个使用 TensorFlow 实现的 CRN(Causal Residual Network)模型,用于音频信号处理。下面是对代码的详细注释:
```
class CrnModel:
def __init__(self, feature_num):
self.feature_num = feature_num # 初始化类的特征数
self.input_magnitude = layers.Input(shape=[128, feature_num], name='input_magnitude') # 定义输入层,输入维度为 [128, feature_num]
model_output = self.structure_model() # 定义模型输出
self.model = tf.keras.Model(inputs=self.input_magnitude, outputs=model_output) # 定义完整模型
self.model.summary() # 打印模型概述
def structure_model(self):
layer_input = self.input_magnitude # 定义输入层
layer_output = layers.Conv1D(filters=64, padding='causal', dilation_rate=1, kernel_size=3, activation='relu')(layer_input) # 第一层卷积层
layer_output = layers.Conv1D(filters=64, padding='causal', dilation_rate=2, kernel_size=3, activation='relu')(layer_output) # 第二层卷积层
layer_output = layers.Conv1D(filters=64, padding='causal', dilation_rate=4, kernel_size=3, activation='relu')(layer_output) # 第三层卷积层
layer_output = layers.Conv1D(filters=64, kernel_size=1, activation='linear')(layer_output) # 用 1x1 卷积层降维
layer_output = layers.Conv1D(filters=257, kernel_size=1, activation='relu')(layer_output) # 最终输出层,输出维度为 257
return layer_output # 返回最终输出层
```
该模型使用了四个卷积层,其中 dilation_rate 表示膨胀率,padding 表示填充方式,kernel_size 表示卷积核大小,filters 表示卷积核数量,activation 表示激活函数。模型输入维度为 [128, feature_num],输出维度为 [128, 257],其中 257 表示频域的维度。最后使用 Keras 的 Model 类定义完整模型,并打印模型概述。
把这段代码里的location_embedding_dim去掉class my_GAT(torch.nn.Module): def __init__(self, in_channels, out_channels, n_heads, location_embedding_dim, filters_1, filters_2, dropout): super(my_GAT, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.n_heads = n_heads location_embedding_dim = 0 self.filters_1 = filters_1 self.filters_2 = filters_2 self.dropout = dropout self.location_embedding_dim = location_embedding_dim self.setup_layers() def setup_layers(self): self.GAT_1 = GATConv(in_channels=self.in_channels,out_channels=self.filters_1, heads=self.n_heads, dropout=0.1) self.GAT_2 = GATConv(in_channels=self.filters_1 * self.n_heads + self.location_embedding_dim, out_channels=self.out_channels, heads=self.n_heads, dropout=0.1, concat=False) def forward(self, edge_indices, features, location_embedding): features = torch.cat((features, location_embedding), dim=-1) features = self.GAT_1(features, edge_indices) features = torch.nn.functional.relu(features) features = torch.nn.functional.dropout(features, p=self.dropout, training=self.training) features = torch.cat((features, location_embedding), dim=-1) features = self.GAT_2(features, edge_indices) return features
这段代码里的location_embedding_dim是一个参数,它表示位置嵌入的维度。如果你想去掉它,可以把它的值设为0,然后在构造函数中把self.location_embedding_dim也设为0即可。具体来说,修改后的代码如下:
```
class my_GAT(torch.nn.Module):
def __init__(self, in_channels, out_channels, n_heads, filters_1, filters_2, dropout):
super(my_GAT, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.n_heads = n_heads
self.filters_1 = filters_1
self.filters_2 = filters_2
self.dropout = dropout
self.location_embedding_dim = 0
self.setup_layers()
def setup_layers(self):
self.GAT_1 = GATConv(in_channels=self.in_channels,out_channels=self.filters_1, heads=self.n_heads, dropout=0.1)
self.GAT_2 = GATConv(in_channels=self.filters_1 * self.n_heads, out_channels=self.out_channels, heads=self.n_heads, dropout=0.1, concat=False)
def forward(self, edge_indices, features, location_embedding):
features = self.GAT_1(features, edge_indices)
features = torch.nn.functional.relu(features)
features = torch.nn.functional.dropout(features, p=self.dropout, training=self.training)
features = self.GAT_2(features, edge_indices)
return features
```
阅读全文