%初始格式化 clear all; clc; format long; %给定初始化条件 c1=1.4962; %学习因子1 c2=1.4962; %学习因子2 w=7298; %惯性权重 MaxDT=1000; %最大迭代次数 D=10; %搜索空间维数(未知数个数) N=40; %初始化群体个体数目 eps=10^(-6); %设置精度(在已知最小值时候用) function fitness =x^5-x^3+x^2-20 end % 初始化种群的个体(可以在这里限定位置和速度的范围) for i=1:N for j=1:D x(i,j)=randn; %随机初始化位置 v(i,j)=randn; %随机初始化速度 end end % 先计算各粒子的适应度,并初始化Pi和Pg for i=1:N p(i)=fitness(x(i,:),D); y(i,:)=x(i,:); end pg=x(1,:); %pg为全局最优 for i=2:N if fitness(x(i,:),D)<fitness(pg,D) pg=x(i,:); end end % 进入主要循环,按照公式一次迭代,直到精度满足要求 for t=1:MaxDT for i=1:N v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:)); %实现速度的更新 x(i,:)=x(i,:)+v(i,:); %实现位置的更新 if fitness(x(i,:),D)<p(i) %判断当此时的位置是否为最优的情况,当不满足时继续更新 p(i)=fitness(x(i,:),D); y(i,:)=x(i,:); end if p(i)<fitness(pg,D) pg=y(i,:); end end Pbest(t)=fitness(pg,D); end % 最后从所得到的结果中取出最优解 disp('**********************************************') disp('函数的全局最优位置为:') Solution=pg' disp('最后得到的优化极值为:') Result=fitness(pg,D) disp('**********************************************') % 算法结束 DreamSun GL&HF,适应度函数源程序(fitness.m) function result=fitness(x,D) sum=0 for i=1:D sum=sum+x(i)^2; end result=sum; matlab中这个代码运行不了是怎么回事,帮我改成能运行的

时间: 2023-09-11 16:09:36 浏览: 153
这段代码存在一些问题,我来帮您进行修改: 1. 函数定义不正确:在给定初始化条件后,应该将适应度函数定义为一个独立的函数并返回适应度值。请将以下部分移至代码的最上方: ```matlab function result = fitness(x,D) result = x^5-x^3+x^2-20; end ``` 2. 缺少变量声明:在适应度函数中,您使用了变量 `sum`,但没有进行声明。请在适应度函数内部的开头添加 `sum = 0;`。 3. 语法错误:在 `fitness` 函数的循环中,您忘记了循环的结束语句。请在循环结束前添加 `end`。 4. 缺少分号:在适应度函数中,每个表达式后面都应该使用分号 `;` 来避免输出到命令窗口。请在 `sum=0` 和 `result=sum` 后添加分号。 以下是修改后的代码: ```matlab % 初始格式化 clear all; clc; format long; % 给定初始化条件 c1=1.4962; % 学习因子1 c2=1.4962; % 学习因子2 w=7298; % 惯性权重 MaxDT=1000; % 最大迭代次数 D=10; % 搜索空间维数(未知数个数) N=40; % 初始化群体个体数目 eps=10^(-6); % 设置精度(在已知最小值时候用) % 适应度函数定义 function result = fitness(x,D) sum = 0; for i=1:D sum = sum + x(i)^2; end result = sum; end % 初始化种群的个体(可以在这里限定位置和速度的范围) for i=1:N for j=1:D x(i,j)=randn; % 随机初始化位置 v(i,j)=randn; % 随机初始化速度 end end % 先计算各粒子的适应度,并初始化Pi和Pg for i=1:N p(i)=fitness(x(i,:),D); y(i,:)=x(i,:); end pg=x(1,:); % pg为全局最优 for i=2:N if fitness(x(i,:),D)<fitness(pg,D) pg=x(i,:); end end % 进入主要循环,按照公式一次迭代,直到精度满足要求 for t=1:MaxDT for i=1:N v(i,:) = w*v(i,:) + c1*rand*(y(i,:)-x(i,:)) + c2*rand*(pg-x(i,:)); % 实现速度的更新 x(i,:) = x(i,:) + v(i,:); % 实现位置的更新 if fitness(x(i,:),D) < p(i) % 判断当前位置是否为最优的情况,当不满足时继续更新 p(i) = fitness(x(i,:),D); y(i,:) = x(i,:); end if p(i) < fitness(pg,D) pg = y(i,:); end end Pbest(t) = fitness(pg,D); end % 最后从所得到的结果中取出最优解 disp('**********************************************') disp('函数的全局最优位置为:') Solution = pg' disp('最后得到的优化极值为:') Result = fitness(pg,D) disp('**********************************************') ``` 请注意,这只是对代码进行了修正,但我无法保证算法本身的正确性。您需要自行验证算法逻辑是否正确以及是否满足您的需求。
阅读全文

相关推荐

请帮我修改一下代码,修改要求如下:实验测试参数设置(种群大小40, 搜索维度30,迭代代数3000代,重复测试次数5次;以上);测试维度为30维;代码如下:% 粒子优化算法 clc clear % 设置初始参数 nPop = 50; % 种群数量 nVar = 2; % 变量数量 maxIter = 3000; % 最大迭代次数 c1 = 1.5; % 学习因子1 c2 = 1.5; % 学习因子2 w = 0.7; % 惯性权重 lb = [-5 -5]; % 变量下限 ub = [5 5]; % 变量上限 % 初始化种群 pop.Position = rand(nPop, nVar) .* (ub - lb) + lb; pop.Velocity = zeros(nPop, nVar); pop.Cost = zeros(nPop, 1); % 计算适应度值 for i = 1:nPop pop.Cost(i) = CostFunction(pop.Position(i,:)); end % 初始化个体最优位置和适应度值 pop.Best.Position = pop.Position; pop.Best.Cost = pop.Cost; % 初始化全局最优位置和适应度值 [globalBestCost, globalBestIndex] = min(pop.Cost); globalBest.Position = pop.Position(globalBestIndex, :); % 迭代寻找最优解 for iter = 1:maxIter for i = 1:nPop % 更新粒子速度 pop.Velocity(i,:) = w * pop.Velocity(i,:)... + c1 * rand(1,nVar) .* (pop.Best.Position(i,:) - pop.Position(i,:))... + c2 * rand(1,nVar) .* (globalBest.Position - pop.Position(i,:)); % 更新粒子位置 pop.Position(i,:) = pop.Position(i,:) + pop.Velocity(i,:); % 处理越界情况 pop.Position(i,:) = max(pop.Position(i,:), lb); pop.Position(i,:) = min(pop.Position(i,:), ub); % 计算适应度值 pop.Cost(i) = CostFunction(pop.Position(i,:)); % 更新个体最优位置和适应度值 if pop.Cost(i) < pop.Best.Cost(i) pop.Best.Position(i,:) = pop.Position(i,:); pop.Best.Cost(i) = pop.Cost(i); end % 更新全局最优位置和适应度值 if pop.Cost(i) < globalBestCost globalBest.Position = pop.Position(i,:); globalBestCost = pop.Cost(i); end end % 输出迭代过程中的最优解 disp(['Iteration ' num2str(iter) ': Best Cost = ' num2str(globalBestCost)]); end % 输出最终结果 disp('Optimization finished.'); disp(['Best Solution: x1 = ' num2str(globalBest.Position(1)) ', x2 = ' num2str(globalBest.Position(2))]); disp(['Best Cost: ' num2str(globalBestCost)]); % 适应度函数 function cost = CostFunction(x) cost = x(1)^2 + x(2)^2; end

要求分析分类误差、检测率、误检率等性能指标、以说明该模型的性能% credit_class.m % 信贷信用的评估 % 数据取自德国信用数据库 %% 清理工作空间 clear,clc % 关闭图形窗口 close all %% 读入数据 % 打开文件 fid = fopen('german.data', 'r'); % 按格式读取每一行 % 每行包括21项,包括字符串和数字 C = textscan(fid, '%s %d %s %s %d %s %s %d %s %s %d %s %d %s %s %d %s %d %s %s %d\n'); % 关闭文件 fclose(fid); % 将字符串转换为整数 N = 20; % 存放整数编码后的数值矩阵 C1=zeros(N+1,1000); for i=1:N+1 % 类别属性 if iscell(C{i}) for j=1:1000 % eg: 'A12' -> 2 if i<10 d = textscan(C{i}{j}, '%c%c%d'); % eg: 'A103' -> 3 else d = textscan(C{i}{j}, '%c%c%c%d'); end C1(i,j) = d{end}; end % 数值属性 else C1(i,:) = C{i}; end end %% 划分训练样本与测试样本 % 输入向量 x = C1(1:N, :); % 目标输出 y = C1(N+1, :); % 正例 posx = x(:,y==1); % 负例 negx = x(:,y==2); % 训练样本 trainx = [ posx(:,1:350), negx(:,1:150)]; trainy = [ones(1,350), ones(1,150)*2]; % 测试样本 testx = [ posx(:,351:700), negx(:,151:300)]; testy = trainy; %% 样本归一化 % 训练样本归一化 [trainx, s1] = mapminmax(trainx); % 测试样本归一化 testx = mapminmax('apply', testx, s1); %% 创建网络,训练 % 创建BP网络 net = newff(trainx, trainy); % 设置最大训练次数 net.trainParam.epochs = 1500; % 目标误差 net.trainParam.goal = 1e-13; % 显示级别 net.trainParam.show = 1; % 训练 net = train(net,trainx, trainy); %% 测试 y0 = net(testx); % y0为浮点数输出。将y0量化为1或2。 y00 = y0; % 以1.5为临界点,小于1.5为1,大于1.5为2 y00(y00<1.5)=1; y00(y00>1.5)=2; % 显示正确率 fprintf('正确率: \n'); disp(sum(y00==testy)/length(y00));

%%%%遗传算法求解TSP问题%%%%%%%%%%%%%%%%%%%%%%%%%%% clc clear close all load cityposition1.mat X=cityposition1; %城市位置坐标 D=Distance(X); %生成距离矩阵 N=size(X,1); %城市个数 %% %遗传参数 NIND=100; %种群大小 MAXGEN=200; %最大遗传代数 Pc=0.9; %交叉概率 Pm=0.05; %变异概率 GGAP=0.9; %代沟 %% %初始化种群 Chrom=InitPop(NIND,N); %% %画出随机解的路径图 DrawPath(Chrom(1,:),X) pause(0.1) %% %输出随机解的路径和总距离 disp('初始种群中的一个随机值:') Outputpath(Chrom(1,:)); Rlength=Pathlength(D,Chrom(1,:)); disp(['总距离:',num2str(Rlength)]); disp('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') %% %优化 gen=0; figure; hold on; box on; xlim([0,MAXGEN]) title('优化过程') xlabel('代数') ylabel('最优值') ObjV=Pathlength(D,Chrom); PreObjV=min(ObjV); while gen<MAXGEN %%计算适应度 ObjV=Pathlength(D,Chrom); line([gen-1,gen],[PreObjV,min(ObjV)]); pause(0.0001) PreObjV=min(ObjV); FitnV=Fitness(ObjV); %%选择 SelCh=Select1(Chrom,FitnV); %%交叉 SelCh=Recombin(SelCh,Pc); %%变异 SelCh=Mutate(SelCh,Pm); %%逆转 SelCh=Reverse(SelCh,D); %%重新插入子代的新种群 Chrom=Reins(Chrom,SelCh,ObjV); %%更新迭代次数 gen=gen+1; end ObjV=Pathlength(D,Chrom); [minObjV,minTnd]=min(ObjV); DrawPath(Chrom(minTnd(1),:),X) %%输出最优解的路径和总距离 disp('最优解:') p=Outputpath(Chrom(minTnd(1),:)); disp(['总距离:',num2str(ObjV(minTnd(1)))]); disp('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')

最新推荐

recommend-type

hy-1c数据读取.docx

海洋1C数据读取与MATLAB应用 海洋1C数据是海洋遥感领域的一个重要数据源,对于研究海洋环境和气候变化的科学家来说是一个非常重要的资源。然而,对于这些数据的读取和应用却是一个较为复杂的过程,需要具备一定的...
recommend-type

果壳处理器研究小组(Topic基于RISCV64果核处理器的卷积神经网络加速器研究)详细文档+全部资料+优秀项目+源码.zip

【资源说明】 果壳处理器研究小组(Topic基于RISCV64果核处理器的卷积神经网络加速器研究)详细文档+全部资料+优秀项目+源码.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

JavaScript实现的高效pomodoro时钟教程

资源摘要信息:"JavaScript中的pomodoroo时钟" 知识点1:什么是番茄工作法 番茄工作法是一种时间管理技术,它是由弗朗西斯科·西里洛于1980年代末发明的。该技术使用一个定时器来将工作分解为25分钟的块,这些时间块之间短暂休息。每个时间块被称为一个“番茄”,因此得名“番茄工作法”。该技术旨在帮助人们通过短暂的休息来提高集中力和生产力。 知识点2:JavaScript是什么 JavaScript是一种高级的、解释执行的编程语言,它是网页开发中最主要的技术之一。JavaScript主要用于网页中的前端脚本编写,可以实现用户与浏览器内容的交云互动,也可以用于服务器端编程(Node.js)。JavaScript是一种轻量级的编程语言,被设计为易于学习,但功能强大。 知识点3:使用JavaScript实现番茄钟的原理 在使用JavaScript实现番茄钟的过程中,我们需要用到JavaScript的计时器功能。JavaScript提供了两种计时器方法,分别是setTimeout和setInterval。setTimeout用于在指定的时间后执行一次代码块,而setInterval则用于每隔一定的时间重复执行代码块。在实现番茄钟时,我们可以使用setInterval来模拟每25分钟的“番茄时间”,使用setTimeout来控制每25分钟后的休息时间。 知识点4:如何在JavaScript中设置和重置时间 在JavaScript中,我们可以使用Date对象来获取和设置时间。Date对象允许我们获取当前的日期和时间,也可以让我们创建自己的日期和时间。我们可以通过new Date()创建一个新的日期对象,并使用Date对象提供的各种方法,如getHours(), getMinutes(), setHours(), setMinutes()等,来获取和设置时间。在实现番茄钟的过程中,我们可以通过获取当前时间,然后加上25分钟,来设置下一个番茄时间。同样,我们也可以通过获取当前时间,然后减去25分钟,来重置上一个番茄时间。 知识点5:实现pomodoro-clock的基本步骤 首先,我们需要创建一个定时器,用于模拟25分钟的工作时间。然后,我们需要在25分钟结束后提醒用户停止工作,并开始短暂的休息。接着,我们需要为用户的休息时间设置另一个定时器。在用户休息结束后,我们需要重置定时器,开始下一个工作周期。在这个过程中,我们需要为每个定时器设置相应的回调函数,以处理定时器触发时需要执行的操作。 知识点6:使用JavaScript实现pomodoro-clock的优势 使用JavaScript实现pomodoro-clock的优势在于JavaScript的轻量级和易学性。JavaScript作为前端开发的主要语言,几乎所有的现代浏览器都支持JavaScript。因此,我们可以很容易地在网页中实现pomodoro-clock,用户只需要打开网页即可使用。此外,JavaScript的灵活性也使得我们可以根据需要自定义pomodoro-clock的各种参数,如工作时间长度、休息时间长度等。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【WebLogic客户端兼容性提升秘籍】:一站式解决方案与实战案例

![WebLogic](https://docs.oracle.com/cd/F28299_01/pt857pbr3/eng/pt/tsvt/img/ia2cf27cn-7b68.png) # 摘要 WebLogic作为一款广泛使用的中间件产品,其客户端兼容性对于企业应用至关重要。本文从基本概念出发,系统地介绍了WebLogic的架构、组件以及兼容性问题的分类和影响。通过深入分析兼容性测试方法和诊断分析技术,探讨了如何有效地识别和解决客户端兼容性问题。进一步,本文提出了提升兼容性的策略,包括代码层面的设计、配置管理、补丁升级以及快速响应流程。最后,结合实战案例,本文详细说明了解决方案的实施过
recommend-type

使用jupyter读取文件“近5年考试人数.csv”,绘制近5年高考及考研人数发展趋势图,数据如下(单位:万人)。

在Jupyter Notebook中读取CSV文件并绘制图表,通常需要几个步骤: 1. 首先,你需要导入必要的库,如pandas用于数据处理,matplotlib或seaborn用于数据可视化。 ```python import pandas as pd import matplotlib.pyplot as plt ``` 2. 使用`pd.read_csv()`函数加载CSV文件: ```python df = pd.read_csv('近5年考试人数.csv') ``` 3. 确保数据已经按照年份排序,如果需要的话,可以添加这一行: ```python df = df.sor
recommend-type

CMake 3.25.3版本发布:程序员必备构建工具

资源摘要信息:"Cmake-3.25.3.zip文件是一个包含了CMake软件版本3.25.3的压缩包。CMake是一个跨平台的自动化构建系统,用于管理软件的构建过程,尤其是对于C++语言开发的项目。CMake使用CMakeLists.txt文件来配置项目的构建过程,然后可以生成不同操作系统的标准构建文件,如Makefile(Unix系列系统)、Visual Studio项目文件等。CMake广泛应用于开源和商业项目中,它有助于简化编译过程,并支持生成多种开发环境下的构建配置。 CMake 3.25.3版本作为该系列软件包中的一个点,是CMake的一个稳定版本,它为开发者提供了一系列新特性和改进。随着版本的更新,3.25.3版本可能引入了新的命令、改进了用户界面、优化了构建效率或解决了之前版本中发现的问题。 CMake的主要特点包括: 1. 跨平台性:CMake支持多种操作系统和编译器,包括但不限于Windows、Linux、Mac OS、FreeBSD、Unix等。 2. 编译器独立性:CMake生成的构建文件与具体的编译器无关,允许开发者在不同的开发环境中使用同一套构建脚本。 3. 高度可扩展性:CMake能够使用CMake模块和脚本来扩展功能,社区提供了大量的模块以支持不同的构建需求。 4. CMakeLists.txt:这是CMake的配置脚本文件,用于指定项目源文件、库依赖、自定义指令等信息。 5. 集成开发环境(IDE)支持:CMake可以生成适用于多种IDE的项目文件,例如Visual Studio、Eclipse、Xcode等。 6. 命令行工具:CMake提供了命令行工具,允许用户通过命令行对构建过程进行控制。 7. 可配置构建选项:CMake支持构建选项的配置,使得用户可以根据需要启用或禁用特定功能。 8. 包管理器支持:CMake可以从包管理器中获取依赖,并且可以使用FetchContent或ExternalProject模块来获取外部项目。 9. 测试和覆盖工具:CMake支持添加和运行测试,并集成代码覆盖工具,帮助开发者对代码进行质量控制。 10. 文档和帮助系统:CMake提供了一个内置的帮助系统,可以为用户提供命令和变量的详细文档。 CMake的安装和使用通常分为几个步骤: - 下载并解压对应平台的CMake软件包。 - 在系统中配置CMake的环境变量,确保在命令行中可以全局访问cmake命令。 - 根据项目需要编写CMakeLists.txt文件。 - 在含有CMakeLists.txt文件的目录下执行cmake命令生成构建文件。 - 使用生成的构建文件进行项目的构建和编译工作。 CMake的更新和迭代通常会带来更好的用户体验和更高效的构建过程。对于开发者而言,及时更新到最新稳定版本的CMake是保持开发效率和项目兼容性的重要步骤。而对于新用户,掌握CMake的使用则是学习现代软件构建技术的一个重要方面。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

数字信号处理全攻略:掌握15个关键技巧,提升你的处理效率

![数字信号处理全攻略:掌握15个关键技巧,提升你的处理效率](https://img-blog.csdnimg.cn/img_convert/ea0cc949288a77f9bc8dde5da6514979.png) # 摘要 数字信号处理作为信息科技领域的重要分支,涵盖了从基础理论到高级应用的广泛内容。本文首先介绍了数字信号处理的基础知识,包括基本概念、时域与频域分析、以及核心算法和理论框架。接着,详细探讨了实现信号采样和量化、滤波器设计、以及信号增强和重建实践技巧。文章进一步深入到高级应用,包括信号压缩技术、多维信号处理,以及人工智能技术在信号处理中的集成。最后,本文评述了数字信号处理
recommend-type

给定不超过6的正整数A,考虑从A开始的连续4个数字。请输出所有由它们组成的无重复数字的3位数。编写一个C语言程序

为了编写一个C语言程序来解决这个问题,我们需要遍历给定范围内的所有连续4个数字,并检查每个组合是否能构成一个无重复数字的三位数。这里是一个简单的示例程序: ```c #include <stdio.h> // 函数定义,用于生成并检查无重复数字的3位数 void generate_unique_3_digit(int A) { for (int i = A; i <= A + 3; i++) { int num = i * 100 + (i+1) * 10 + (i+2); if (num >= 100 && num < 1000 && is_uni