优化这段代码import os dir_path = "C:/Users/1028/Desktop/r" dir_py = os.listdir(dir_path) cancer='HNSC'#设置变量 train=pd.read_csv(dir_py+"\\tcga_data\\"+cancer+"\\ml_input.csv") target=pd.read_csv(dir_py+"\\tcga_data\\"+cancer+"\\tab_label.csv",index_col=0).values.ravel()#index_col=0表示将第一列作为索引列 indices = train.columns[2:]#提取索引,从第三列开始(索引2) train=train.iloc[:,2:].T.values#选择所有行和从第三列开始的所有列。然后通过.T进行转置操作,将数据框转换为NumPy数组
时间: 2024-04-14 16:29:51 浏览: 146
你可以稍微优化一下代码,将文件路径的拼接部分提取出来,避免重复写入。另外,还可以使用`numpy`库的`genfromtxt`函数来读取CSV文件,以简化读取和转置操作。以下是优化后的代码:
```python
import os
import pandas as pd
import numpy as np
dir_path = "C:/Users/1028/Desktop/r"
cancer = 'HNSC'
data_dir = os.path.join(dir_path, "tcga_data", cancer)
train_path = os.path.join(data_dir, "ml_input.csv")
label_path = os.path.join(data_dir, "tab_label.csv")
train = np.genfromtxt(train_path, delimiter=',', skip_header=1)
target = pd.read_csv(label_path, index_col=0).values.ravel()
indices = train[:, 2:].T
train = train[:, 2:].T
```
在这个例子中,我们使用`os.path.join`函数来拼接文件路径,然后使用`np.genfromtxt`函数来读取CSV文件并跳过标题行。最后,我们使用`.T`转置操作来得到索引和训练数据。请确保文件路径正确,并且你已经安装了所需的库(如pandas和numpy)。
相关问题
修改代码:import os from PIL import Image import glob import numpy as np # 遍历文件夹 folder_path = 'E:/机器学习/helefull/labels' folders = os.listdir(folder_path) # print(folders) for filename in glob.glob(r'E:/机器学习/helefull/labels/*.png'): img=Image.open(filename).convert("RGB") # images=np.asarray(img) # print(images) # 只处理其中的20个文件夹 folder for folder in folders[:20]: folder_full_path = os.path.join(folder_path, folder) # print(folder_full_path) if os.path.isdir(folder_full_path): images = os.listdir(folder_full_path) print(images) blank_img = Image.new('RGB', (417, 354), (0, 0, 0)) for i,image_name in images: # 打开当前图片 img_path = os.path.join(folder_full_path, image_name) img = Image.open(img_path) # 遍历每一个像素点 for x in range(img.width): for y in range(img.height): # 如果当前像素点值为255,则将该像素点在空白图片上标记为i+1 if img.getpixel((x, y)) == 255: blank_img.putpixel((x, y), i+100) blank_img.save(f'new_{folder}.png')
import os
from PIL import Image
import glob
import numpy as np
# 遍历文件夹
folder_path = 'E:/机器学习/helefull/labels'
folders = os.listdir(folder_path)
for filename in glob.glob(r'E:/机器学习/helefull/labels/*.png'):
img = Image.open(filename).convert("RGB")
# images=np.asarray(img)
# print(images)
# 只处理其中的20个文件夹
for folder in folders[:20]:
folder_full_path = os.path.join(folder_path, folder)
# print(folder_full_path)
if os.path.isdir(folder_full_path):
images = os.listdir(folder_full_path)
print(images)
blank_img = Image.new('RGB', (417, 354), (0, 0, 0))
for i, image_name in enumerate(images):
# 打开当前图片
img_path = os.path.join(folder_full_path, image_name)
img = Image.open(img_path)
# 遍历每一个像素点
for x in range(img.width):
for y in range(img.height):
# 如果当前像素点值为255,则将该像素点在空白图片上标记为i+1
if img.getpixel((x, y)) == 255:
blank_img.putpixel((x, y), i+100)
blank_img.save(f'new_{folder}.png')
data_dir = 'D:/tupianshuju\erfenlei' images = [os.path.join(data_dir, f) for f in os.listdir(data_dir) if os.path.isfile(os.path.join(data_dir, f))]
这段代码是用来读取指定文件夹中的所有文件的路径的。假设 `data_dir` 变量指向的是一个文件夹,代码会遍历该文件夹下的所有文件,将它们的完整路径存储在一个列表 `images` 中。具体来说,代码使用了 Python 内置的 `os` 模块来进行文件操作,`os.listdir()` 方法可以列出指定文件夹中的所有文件和子文件夹,`os.path.join()` 方法可以将多个路径组合成一个完整路径,`os.path.isfile()` 方法可以判断某个路径是否是一个文件。最终,`images` 列表中存储的是指定文件夹中所有文件的完整路径。
阅读全文