weight_decay
时间: 2023-07-14 21:04:31 浏览: 243
PyTorch中的weight_decay是一种正则化技术,用于控制模型的复杂度,防止过拟合。它通过在优化器中添加一个惩罚项,使得模型在训练过程中更倾向于选择较小的权重值。具体来说,weight_decay是在优化器的更新公式中添加一个L2正则化项,其系数即为weight_decay的值。这样,模型在每次更新时会将权重值减少一个比例,从而使得模型更加简单,避免过拟合。
相关问题
def init(self, lr, weight_decay): self.lr = lr self.weight_decay = weight_decay
This code defines the constructor for a class. The constructor takes two arguments: lr and weight_decay. These arguments are used to initialize two instance variables with the same names.
lr represents the learning rate, which is a hyperparameter that determines how quickly the model learns from the data. weight_decay is another hyperparameter that is used to prevent overfitting by adding a penalty term to the loss function.
By setting these instance variables in the constructor, they can be accessed and used throughout the class methods.
hyp["weight_decay"] *= batch_size * accumulate / nbs # scale weight_decay KeyError: 'weight_decay'
`KeyError: 'weight_decay'` 这个错误表明在尝试访问名为 "weight_decay" 的键时,字典 hyp 中不存在该键。在 Python 中,字典是一种键值对集合,当你使用键来获取值时,如果该键不存在于字典中,就会抛出 `KeyError`。
在你提供的代码行 `hyp["weight_decay"] *= batch_size * accumulate / nbs` 中,代码的意图是获取 `hyp` 字典中键为 "weight_decay" 对应的值,然后将该值与 `batch_size * accumulate / nbs` 的结果相乘,并将乘积结果重新赋值给 `hyp["weight_decay"]`。但是,如果 `hyp` 字典中没有 "weight_decay" 键,就会出现上述错误。
解决这个问题的一个方法是在尝试访问和修改字典之前检查该键是否存在,例如使用 `get` 方法或者在访问前使用 `in` 关键字进行检查:
```python
if 'weight_decay' in hyp:
hyp['weight_decay'] *= batch_size * accumulate / nbs
else:
print("Key 'weight_decay' not found in dictionary.")
```
或者使用 `get` 方法提供一个默认值,如果键不存在就返回默认值:
```python
hyp['weight_decay'] = hyp.get('weight_decay', default_value) * batch_size * accumulate / nbs
```
在这段代码中,如果 `weight_decay` 不存在,`get` 方法会返回 `default_value`,然后将 `batch_size * accumulate / nbs` 的结果与 `default_value` 相乘。
阅读全文