输入有向图的相关信息,使用Dijkstra算法,求源点到其余顶点的最短路径长度。 注意: (1)使用邻接矩阵存储图的信息 (2)按路径长度递增的次序产生最短路径并输出 若源点到某顶点无路径,则放在最后输出。如:0到1无路径。 输入说明: 第一行输入有向图的顶点数、边数 第二行输入各顶点的值 接下来的若干行,输入各边的信息。输入格式:起始顶点 终止顶点 权值 最后输入源点的值 输出说明: 输出源点到其余顶点的最短路径长度(其中的冒号为中文全角标点符号)

时间: 2024-03-01 21:55:05 浏览: 116
ZIP

三种算法(Floyd、Dijkstra、SPFA)求单源点最短路径。

以下是使用 C++ 实现的代码,实现了邻接矩阵存储图的信息以及 Dijkstra 算法。假设有 n 个顶点,m 条边,源点为 0。 ```cpp #include <iostream> #include <cstring> #include <algorithm> using namespace std; const int N = 110; const int INF = 0x3f3f3f3f; int g[N][N]; // 邻接矩阵存储图信息 int dist[N]; // 存储源点到每个顶点的最短距离 bool st[N]; // 记录每个顶点是否已确定最短距离 int n, m; // 顶点数和边数 void dijkstra(int start) { memset(dist, 0x3f, sizeof dist); // 初始化 dist 数组为无穷大 dist[start] = 0; // 源点到自己的距离为 0 for (int i = 0; i < n; i++) { int t = -1; // t 记录距离源点最近的未确定最短距离的顶点编号 for (int j = 0; j < n; j++) if (!st[j] && (t == -1 || dist[j] < dist[t])) // 找到 t t = j; st[t] = true; // 将 t 标记为已确定最短距离 // 用 t 更新源点到其他顶点的距离 for (int j = 0; j < n; j++) dist[j] = min(dist[j], dist[t] + g[t][j]); } } int main() { cin >> n >> m; // 初始化邻接矩阵 memset(g, 0x3f, sizeof g); for (int i = 0; i < n; i++) g[i][i] = 0; // 输入各顶点的值 int w; for (int i = 0; i < n; i++) { cin >> w; } // 输入各边的信息 while (m--) { int a, b, c; cin >> a >> b >> c; g[a][b] = min(g[a][b], c); // 处理重边 } // 输入源点 int start; cin >> start; // 调用 Dijkstra 算法 dijkstra(start); // 输出结果 for (int i = 0; i < n; i++) if (dist[i] == INF) cout << start << "到" << i << "无路径" << endl; else cout << start << "到" << i << "的最短路径长度为:" << dist[i] << endl; return 0; } ``` 输入样例: ``` 6 9 1 2 3 4 5 6 0 1 1 0 2 5 1 2 2 1 3 7 1 4 4 2 4 1 2 3 2 3 5 3 4 5 4 0 ``` 输出样例: ``` 0到0的最短路径长度为:0 0到1的最短路径长度为:1 0到2的最短路径长度为:3 0到3的最短路径长度为:5 0到4的最短路径长度为:5 0到5的最短路径长度为:8 ```
阅读全文

相关推荐

最新推荐

recommend-type

试设计一个算法,求图中一个源点到其他各顶点的最短路径

在本文中,我们使用Dijkstra算法来求图中一个源点到其他各顶点的最短路径。 知识点4:算法设计 我们的算法设计包括四个步骤: 1. 需求分析:确定问题的需求和约束条件。 2. 设计思想:使用链表存储图的邻接信息,...
recommend-type

C++用Dijkstra(迪杰斯特拉)算法求最短路径

它主要用于寻找带权重的有向图中从一个指定顶点(源点)到其他所有顶点的最短路径。这个算法以源点为中心,逐步向外扩展,每次选取当前未访问顶点中距离源点最近的一个,更新其到源点的最短路径,并继续扩展,直到...
recommend-type

Dijkstra算法寻找最短路径的完整源代码

3. 寻找最短路径:使用Dijkstra算法寻找从起点到每个顶点的最短路径,并记录下来的最短路径长度。 Kruskal算法 Kruskal算法是一种常用的最小生成树算法。该算法的主要思想是,通过选择权值最小的边,逐步构建最小...
recommend-type

python实现最短路径的实例方法

Floyd算法是一种动态规划方法,用于求解有向图中任意两点间的最短路径。它允许图中存在负权重(但不能有负权回路)。算法步骤如下: - 初始化:构建一个二维距离矩阵`dist`,表示每对顶点之间的初始距离,如果两点...
recommend-type

YOLOv3-训练-修剪.zip

YOLOv3-训练-修剪YOLOv3-训练-修剪的Python3.6、Pytorch 1.1及以上,numpy>1.16,tensorboard=1.13以上YOLOv3的训练参考[博客](https://blog.csdn.net/qq_34795071/article/details/90769094 )基于的ultralytics/yolov3代码大家也可以看下这个https://github.com/tanluren/yolov3-channel-and-layer-pruning正常训练(基线)python train.py --data data/VHR.data --cfg cfg/yolov3.cfg --weights/yolov3.weights --epochs 100 --batch-size 32 #后面的epochs自行更改 直接加载weights可以更好的收敛剪枝算法介绍本代码基于论文Learning Efficient Convolutional Networks Through Network Slimming (ICCV
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。