if __name__ == '__main__': res18 = ResNet(block=BasicBlock, n_blocks=[2, 2, 2, 2], channels=[64, 128, 256, 512], output_dim=1000) input = torch.randn(1, 3, 224, 224) output = res18(input) print(output.size())
时间: 2023-05-12 10:03:20 浏览: 68
这是一个使用 PyTorch 实现的 ResNet 网络,包含了 4 个阶段,每个阶段包含了 2 个 BasicBlock 模块,输入图片的大小为 224x224,输出维度为 1000。在输入一个 3 通道的 224x224 的随机张量后,输出的大小应该为 (1, 1000)。
相关问题
def __init__(self, block_list, initial_filters=64): # block_list表示每个block有几个卷积层 super(ResNet18, self).__init__() self.num_blocks = len(block_list) # 共有几个block self.block_list = block_list self.out_filters = initial_filters self.c1 = layers.Conv2D(self.out_filters, (3, 3), strides=1, padding='same', use_bias=False) self.b1 = layers.BatchNormalization() self.a1 = layers.Activation('relu') self.blocks = tf.keras.models.Sequential() # 构建ResNet网络结构 for block_id in range(len(block_list)): # 第几个resnet block for layer_id in range(block_list[block_id]): # 第几个卷积层 if block_id != 0 and layer_id == 0: # 对除第一个block以外的每个block的输入进行下采样 block = ResnetBlock(self.out_filters, strides=2, residual_path=True) else: block = ResnetBlock(self.out_filters, residual_path=False) self.blocks.add(block) # 将构建好的block加入resnet self.out_filters *= 2 # 下一个block的卷积核数是上一个block的2倍 self.p1 = tf.keras.layers.GlobalAveragePooling2D() self.f1 = tf.keras.layers.Dense(10, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2())解释代码
这段代码是定义了一个 ResNet18 神经网络模型,它采用了残差网络(ResNet)的结构。ResNet18 模型由一系列 ResnetBlock 组成,每个 ResnetBlock 包含若干个卷积层。其中,第一个 ResnetBlock 的输入经过一个卷积层后直接进入该 ResnetBlock,而后续的每个 ResnetBlock 的输入则需要通过一个下采样的卷积层进行降维,以便与该 ResnetBlock 中的输出进行相加。最终,模型的输出经过全局平均池化后,再经过一个全连接层输出预测结果。同时,模型中还使用了批归一化(BatchNormalization)和 L2 正则化(kernel_regularizer=tf.keras.regularizers.l2())等技术来提高模型的泛化能力。
为以下每句代码做注释:def resnet18(num_classes=1000, include_top=True): return ResNet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes, include_top=include_top) def resnet34(num_classes=1000, include_top=True): return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top) def resnet50(num_classes=1000, include_top=True): return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top) def resnet101(num_classes=1000, include_top=True): return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top) def resnet152(num_classes=1000, include_top=True): return ResNet(Bottleneck, [3, 8, 36, 3], num_classes=num_classes, include_top=include_top)
这段代码定义了5个函数,分别用于构建5个不同深度的ResNet模型,这些函数的参数含义如下:
- num_classes:分类数目,默认为1000
- include_top:是否包含顶层的全连接层,默认为True
这些函数都返回一个ResNet模型,其中BasicBlock和Bottleneck是ResNet中的两种基本块,[2, 2, 2, 2]、[3, 4, 6, 3]、[3, 4, 6, 3]、[3, 4, 23, 3]、[3, 8, 36, 3]分别代表这些ResNet模型所包含的基本块数目。这些函数可以用于构建不同深度的ResNet模型,以适应不同的图像分类任务。
阅读全文