void queen(int n, SqStack &s) { int i, j, k; int find = 0; /*初始化栈顶指针*/ s.top = 0; /*行作为栈顶指针进栈,初始值为1*/ s.top++; /*列作为栈顶指针进栈,初始值为1*/ /*--->(1,1)进栈*/ s.data[s.top] = 1; /*条件:栈不空,循环操作-->开启探寻*/ while (s.top>0) { /*i为行数标志,可作为参数使用,也用于判断是否走尽*/ i = s.top; /*当前皇后行数s.top == n-->已经处理完最后一个皇后,所有皇后均放好,输出一个解 *注意:并不会结束程序,因为N皇后问题有多个解 */ if (s.top == n) { printf("第%d个解:", ++count); for (k = 1; k < s.top; k++) printf("(%d,%d)", k, s.data[k]); printf("\n"); } find = 0; /*在i+1行探寻一个放皇后的位置(i+1,j)*/ for (j = 1; j <= n; j++) /*条件正确,表明探寻到一个合适的位置-->行列入栈*/ if (placeQueen(s, i + 1, j)) { /*行+1入栈*/ s.top++; /*列入栈*/ s.data[s.top] = j; /*找到标志,如果走完此for循环,标志未变更,则走到下一段代码*/ find = 1; /*跳出for循环*/ break; } /*当前行无目标-->退栈*/ if (find == 0) { while (s.top > 0) { /*1-已到达最末列无位置即本行无可放位置,退栈*/ if (s.data[s.top] == n) /*形象来讲,行-1*/ s.top-- ; /*2-未走完全位置,从下位置出发探寻*/ for (j = s.data[s.top] + 1; j <= n; j++) /*在后续列中探寻到合适的位置*/ if (placeQueen(s, s.top, j)) { /*列入栈*/ s.data[s.top] = j; break; } /*当前皇后在本行没有可放位置,退栈 */ if (j > n) s.top--; else break; }} }}

时间: 2024-03-18 10:45:49 浏览: 16
这段代码是用于解决N皇后问题的核心代码。其中,参数n表示问题的规模,s是一个栈,用于存储已经放置的皇后的位置。该算法采用回溯法,从第一行开始依次放置皇后,对于每一行,遍历所有列,判断当前位置是否可行,如果可行,则将该位置入栈,并进入下一行继续尝试放置皇后。如果当前行已经走尽(即所有列都已经尝试过),但没有找到可行的位置,则退栈,回到上一行,继续尝试其他列。如果回溯到第一行,说明已经找到一组解,输出该解。如果退栈到栈空,说明已经找遍了所有可能的解,算法结束。 该算法的核心在于placeQueen函数,用于判断当前位置是否与前面已经放置的皇后有冲突。queen函数则是对该算法的具体实现,包括栈的初始化、回溯、输出解等操作。
相关问题

帮我给以下代码做注释:void InitStack(SqStack*& s) { /*初始化栈,将栈置空*/ s = (SqStack*)malloc(sizeof(SqStack));/* 分配栈的存储空间 */ s->top = -1; /* 令top为-1表示栈为空 */ } int StackEmpty(SqStack* s) { /* 判断栈是否为空。如果栈空,返回true,否则返回false */ return(s->top == -1); } int Push(SqStack*& s, ElemType e) { /* 将元素e压入到栈S中 */ if (s->top == maxsize - 1) /* 栈满则操作失败 */ return false; s->top++; s->data[s->top] = e; return true; } int Pop(SqStack*& s, ElemType& e) { /* 将栈S中的栈顶元素出栈 */ if (s->top == -1) /* 栈空则操作失败 */ return false; e = s->data[s->top]; s->top--; return true; } void ClearStack(SqStack*& s) { free(s); } int StackLength(SqStack* s) { return(s->top + 1); } int GetTop(SqStack* s, ElemType& e) { /* 将栈S中的栈顶元素取出 */ if (s->top == -1) /* 栈空则操作失败 */ return false; e = s->data[s->top]; return true; } void DispStack(SqStack* s) { int i; for (i = s->top; i >= 0; i--) printf("%c", s->data[i]); printf("\n"); }

// 声明一个名为SqStack的结构体类型 typedef struct { ElemType data[maxsize]; // 存储栈中元素的数组 int top; // 栈顶指针,指向栈顶元素在data数组中的位置 } SqStack; // 初始化栈,将栈置空 void InitStack(SqStack*& s) { s = (SqStack*)malloc(sizeof(SqStack)); // 分配栈的存储空间 s->top = -1; // 令top为-1表示栈为空 } // 判断栈是否为空。如果栈空,返回true,否则返回false int StackEmpty(SqStack* s) { return(s->top == -1); } // 将元素e压入到栈S中 int Push(SqStack*& s, ElemType e) { if (s->top == maxsize - 1) // 栈满则操作失败 return false; s->top++; s->data[s->top] = e; return true; } // 将栈S中的栈顶元素出栈 int Pop(SqStack*& s, ElemType& e) { if (s->top == -1) // 栈空则操作失败 return false; e = s->data[s->top]; s->top--; return true; } // 释放栈的存储空间 void ClearStack(SqStack*& s) { free(s); } // 返回栈的长度 int StackLength(SqStack* s) { return(s->top + 1); } // 将栈S中的栈顶元素取出 int GetTop(SqStack* s, ElemType& e) { if (s->top == -1) // 栈空则操作失败 return false; e = s->data[s->top]; return true; } // 打印栈中的元素 void DispStack(SqStack* s) { int i; for (i = s->top; i >= 0; i--) printf("%c", s->data[i]); printf("\n"); } 注释的作用是为了方便代码的阅读和理解,对代码进行解释和说明。上述代码是一个栈的实现,注释内容包括函数的作用、参数的解释、变量的含义和特殊情况的处理等。

#include<stdio.h> #include<stdlib.h> #include<string.h> #define MAXSIZE 100 #define OK 1 #define ERROR 0 #define OVERFLOW -2 #define INFEASIBLE -1 typedef struct {/* 栈类定义 */ char data[MAXSIZE]; int top; }SqStack; typedef struct { /* 队列类定义 */ char data[MAXSIZE]; int front;/* 队首指针 */ int rear;/* 队尾指针 */ }SqQueue; void InitSqStack(SqStack *s) { /* 初始化栈,将栈置空 */ s->top=0; /* 令top为0表示栈为空 */ } int InitSqQueue(SqQueue *q) {/* 初始化循环队列,将队列置为空 */ *q=(SqQueue *)malloc(sizeof(SqQueue));/* 分配队列的存储空间 */ if(*q==NULL){ return 0; } (*q)->front=(*q)->rear=0;/* 令front为0 */ return 1; } int PushStack(SqStack *s,char e) { /* 将元素e压入到栈S中 */ if(s->top==MAXSIZE)/* 栈满则操作失败 */ return 0; s->data[s->top]=e; s->top++; return 1; } int PushSqQueue(SqQueue *q,char e) {/* 将元素e压入到队列Q中 */ if(q->front==(q->rear+1)%MAXSIZE) /* 队列满则操作失败 */ return 0; q->data[q->rear]=e; q->rear=(q->rear+1)%MAXSIZE; return 1; } int PopStack(SqStack *s,char *e) {/* 将栈S中的栈顶元素出栈 */ if(s->top==0) /* 栈空则操作失败 */ return 0; s->top--; *e=s->data[s->top]; return 1; } int PopQueue(SqQueue *q,char *e) { /* 将队列Q中的队首元素删除 */ if(q->front==q->rear) /* 队列空则操作失败 */ return 0; *e=q->data[q->front]; q->front=(q->front+1)%MAXSIZE; return 1; } void Print(SqStack *s){ while(s->top!=0){ char x; PopStack(s,&x); printf("%c",x); } } void EditString(){ SqStack s; InitSqStack(&s); char c; while((c=getchar())!='\n'){ if(c=='#'){ char x; PopStack(&s,&x); } else if(c=='@'){ InitSqStack(&s); } else{ PushStack(&s,c); } } Print(&s); } void ReadString() { SqQueue q; InitSqQueue(&q); char c; while((c=getchar())!='\n'){ PushSqQueue(&q,c); } while(q.front!=q.rear){ char x; PopQueue(&q,&x); printf("%c",x); } } int main() { SqQueue *q; if(InitSqQueue(&q) == 0){return 0;} EditString(); ReadString(); free(q); return 0; }检查代码错误,并修改

在main函数中,将SqQueue *q改为SqQueue q,因为InitSqQueue函数的参数是SqQueue *q,而不是SqQueue **q,修改后的代码如下: ``` #include<stdio.h> #include<stdlib.h> #include<string.h> #define MAXSIZE 100 #define OK 1 #define ERROR 0 #define OVERFLOW -2 #define INFEASIBLE -1 typedef struct {/* 栈类定义 */ char data[MAXSIZE]; int top; }SqStack; typedef struct { /* 队列类定义 */ char data[MAXSIZE]; int front;/* 队首指针 */ int rear;/* 队尾指针 */ }SqQueue; void InitSqStack(SqStack *s) { /* 初始化栈,将栈置空 */ s->top=0; /* 令top为0表示栈为空 */ } int InitSqQueue(SqQueue *q) {/* 初始化循环队列,将队列置为空 */ q=(SqQueue *)malloc(sizeof(SqQueue));/* 分配队列的存储空间 */ if(q==NULL){ return 0; } q->front=q->rear=0;/* 令front为0 */ return 1; } int PushStack(SqStack *s,char e) { /* 将元素e压入到栈S中 */ if(s->top==MAXSIZE)/* 栈满则操作失败 */ return 0; s->data[s->top]=e; s->top++; return 1; } int PushSqQueue(SqQueue *q,char e) {/* 将元素e压入到队列Q中 */ if(q->front==(q->rear+1)%MAXSIZE) /* 队列满则操作失败 */ return 0; q->data[q->rear]=e; q->rear=(q->rear+1)%MAXSIZE; return 1; } int PopStack(SqStack *s,char *e) {/* 将栈S中的栈顶元素出栈 */ if(s->top==0) /* 栈空则操作失败 */ return 0; s->top--; *e=s->data[s->top]; return 1; } int PopQueue(SqQueue *q,char *e) { /* 将队列Q中的队首元素删除 */ if(q->front==q->rear) /* 队列空则操作失败 */ return 0; *e=q->data[q->front]; q->front=(q->front+1)%MAXSIZE; return 1; } void Print(SqStack *s){ while(s->top!=0){ char x; PopStack(s,&x); printf("%c",x); } } void EditString(){ SqStack s; InitSqStack(&s); char c; while((c=getchar())!='\n'){ if(c=='#'){ char x; PopStack(&s,&x); } else if(c=='@'){ InitSqStack(&s); } else{ PushStack(&s,c); } } Print(&s); } void ReadString() { SqQueue q; InitSqQueue(&q); char c; while((c=getchar())!='\n'){ PushSqQueue(&q,c); } while(q.front!=q.rear){ char x; PopQueue(&q,&x); printf("%c",x); } } int main() { SqQueue q; if(InitSqQueue(&q) == 0){return 0;} EditString(); ReadString(); free(q); return 0; } ```

相关推荐

一个连通图采用邻接表作为存储结构。设计一个算法,实现从顶点v出发的深度优先遍历的非递归过程。#include<iostream> #define OK 1 #define ERROR 0 #define OVERFLOW -2 #define MAXSIZE 100 using namespace std; typedef struct ArcNode {//边结点 int data; struct ArcNode *nextarc; //链域:指向下一条边的指针 }ArcNode; typedef struct VNode {//顶点信息 int data; ArcNode *firstarc; //链域:指向第一条依附该顶点的边的指针 }VNode,AdjList[MAXSIZE]; //AdjList表示邻接表类型 typedef struct {//邻接表 AdjList vertices; int vexnum,arcnum; //图的当前顶点数和边数 }ALGraph; typedef struct {//顺序栈 int *base; //栈底指针 int *top; //栈顶指针 int stacksize; //栈可用的最大容量 }SqStack; void InitStack(SqStack &S) {//顺序栈的初始化 S.base=new int[MAXSIZE]; //动态分配一个最大容量MAXSIZE的数组空间 S.top=S.base; //top初始为base,空栈 S.stacksize=MAXSIZE; } void Push(SqStack &S,int e) {//入栈操作 if(S.top-S.base==S.stacksize) //栈满 return; *S.top=e; //元素e压入栈顶 S.top++; //栈顶指针加1 } void Pop(SqStack &S,int &e) {//出栈操作 if(S.base==S.top) //栈空 return; S.top--; //栈顶指针减1 e=*S.top; //将栈顶元素赋给e } bool StackEmpty(SqStack S) {//判空操作 if(S.base==S.top) //栈空返回true return true; return false; } bool visited[MAXSIZE]; //访问标志数组,初始为false int CreateUDG(ALGraph &G,int vexnum,int arcnum) {//采用邻接表表示法,创建无向图G G.vexnum=vexnum; //输入总顶点数 G.arcnum=arcnum; //输入总边数 if(G.vexnum>MAXSIZE) return ERROR; //超出最大顶点数则结束函数 int i,h,k; for(i=1;i<=G.vexnum;i++) //构造表头结点表 { G.vertices[i].data=i; visited[i]=false; G.vertices[i].firstarc=NULL; } ArcNode *p1,*p2; for(i=0;i<G.arcnum;i++) //输入各边,头插法构造邻接表 { cin>>h>>k; p1=new ArcNode; p1->data=k; p1->nextarc=G.vertices[h].firstarc; G.vertices[h].firstarc=p1; p2=new ArcNode; p2->data=h; p2->nextarc=G.vertices[k].firstarc; G.vertices[k].firstarc=p2; } return OK; } void DFS(ALGraph G,int v,SqStack S) {//从第v个顶点出发非递归实现深度优先遍历图G /**begin/ /**end/ } int main() { int n,m; while(cin>>n>>m) { if(n==0&&m==0) break; ALGraph G; SqStack S; CreateUDG(G,n,m); //创建无向图G int d; //从d开始遍历 cin>>d; DFS(G,d,S); //基于邻接表的深度优先遍历 } return 0; }

最新推荐

recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

matlab建立计算力学课程的笔记和文件.zip

matlab建立计算力学课程的笔记和文件.zip
recommend-type

FT-Prog-v3.12.38.643-FTD USB 工作模式设定及eprom读写

FT_Prog_v3.12.38.643--FTD USB 工作模式设定及eprom读写
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这