gcn进行图片分类的案例包含代码
时间: 2023-07-05 08:08:06 浏览: 23
以下是使用GCN进行图像分类的示例代码:
首先,需要导入必要的依赖项:
```python
import torch
import torch.nn.functional as F
from torch_geometric.datasets import MNISTSuperpixels
from torch_geometric.nn import GCNConv
from torch_geometric.data import DataLoader
```
接下来,定义模型:
```python
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = GCNConv(1, 32, cached=False)
self.conv2 = GCNConv(32, 64, cached=False)
self.fc1 = torch.nn.Linear(64, 128)
self.fc2 = torch.nn.Linear(128, 10)
def forward(self, data):
x, edge_index, batch = data.x, data.edge_index, data.batch
x = F.relu(self.conv1(x, edge_index))
x = F.relu(self.conv2(x, edge_index))
x = torch_geometric.nn.global_max_pool(x, batch)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
```
然后,加载数据集并进行训练:
```python
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Net().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
criterion = torch.nn.NLLLoss()
train_dataset = MNISTSuperpixels(root='./data', train=True)
test_dataset = MNISTSuperpixels(root='./data', train=False)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
def train():
model.train()
for data in train_loader:
data = data.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, data.y)
loss.backward()
optimizer.step()
def test(loader):
model.eval()
correct = 0
for data in loader:
data = data.to(device)
output = model(data)
pred = output.max(1)[1]
correct += pred.eq(data.y).sum().item()
return correct / len(loader.dataset)
for epoch in range(1, 201):
train()
train_acc = test(train_loader)
test_acc = test(test_loader)
print(f'Epoch: {epoch}, Train Acc: {train_acc:.4f}, Test Acc: {test_acc:.4f}')
```
这里使用了MNISTSuperpixels数据集进行训练和测试,但是可以根据实际情况替换为其他图像数据集。
相关推荐













