N EQU 5,AREA Test1,CODE,READONLY,ENTRY,MOV R0,#0,MOV R1,#1,REPEAT ADD R0,R0,R1,ADD R1,R1,#1,CMP R1,#N,BLE REPEAT,LDR R2,=RESULT,STR R0,[R2],HERE B HERE,AREA DataSpace,DATA,READWRITE,RESULT DCD 0,END中R2的最终值是什么

时间: 2023-09-25 15:09:13 浏览: 36
根据您提供的汇编代码,R2的最终值应该是DataSpace区域中RESULT标签所在地址的值。在这个代码中,RESULT标签是一个4字节的内存单元,它的初始值为0。在代码的执行过程中,R0中存储了一个累加器的值,最终将其存储到RESULT标签所在的内存单元中,然后程序跳转回HERE标签处,无限循环。因此,R2的最终值应该是DataSpace区域中RESULT标签所在地址的值,即0x00000000。
相关问题

逐句解释代码N EQU 5,AREA Test1,CODE,READONLY,ENTRY,MOV R0,#0,MOV R1,#1,REPEAT ADD R0,R0,R1,ADD R1,R1,#1,CMP R1,#N,BLE REPEAT,LDR R2,=RESULT,STR R0,[R2],HERE B HERE,AREA DataSpace,DATA,READWRITE,RESULT DCD 0,END

1. `N EQU 5`: 这段代码定义了一个常量 N 等于 5。 2. `AREA Test1,CODE,READONLY,ENTRY`: 这段代码定义了一个名为 Test1 的区域,它是代码区(CODE),只读(READONLY),并且定义了一个入口点(ENTRY)。 3. `MOV R0,#0`: 将寄存器 R0 的值设置为 0。 4. `MOV R1,#1`: 将寄存器 R1 的值设置为 1。 5. `REPEAT`: 这是一个标签,表示代码需要重复执行这个标签后面的指令。 6. `ADD R0,R0,R1`: 将寄存器 R0 和 R1 的值相加,结果存储在 R0 中。 7. `ADD R1,R1,#1`: 将寄存器 R1 的值加1。 8. `CMP R1,#N`: 比较 R1 和 N 的值。 9. `BLE REPEAT`: 如果 R1 的值小于等于 N,则跳转到 REPEAT 标签处继续执行指令。 10. `LDR R2,=RESULT`: 将 RESULT 的地址存储在 R2 中。 11. `STR R0,[R2]`: 将 R0 的值存储在 RESULT 变量中。 12. `HERE`: 这是一个标签,表示代码需要跳转到 HERE 标签处。 13. `B HERE`: 无条件跳转到 HERE 标签处。 14. `AREA DataSpace,DATA,READWRITE`: 这段代码定义了一个名为 DataSpace 的区域,它是数据区(DATA),可读可写(READWRITE)。 15. `RESULT DCD 0`: 定义了一个名为 RESULT 的变量,并将其初始化为0。 16. `END`: 表示代码结束。

解释代码N EQU 5,AREA Test1,CODE,READONLY,ENTRY,MOV R0,#0,MOV R1,#1,REPEAT ADD R0,R0,R1,ADD R1,R1,#1,CMP R1,#N,BLE REPEAT,LDR R2,=RESULT,STR R0,[R2],HERE B HERE,AREA DataSpace,DATA,READWRITE,RESULT DCD 0,END

这是一段ARM汇编代码,它定义了一个常量 N 等于 5,然后定义了一个区域 AREA,名称为 Test1,类型为 CODE,只读(READONLY),入口点(ENTRY)。接下来,代码使用寄存器 R0 和 R1 来计算从1到N的和,并将结果存储在 RESULT 变量中。代码使用 REPEAT 和 BLE 指令来实现循环,当 R1 的值小于等于 N 时,REPEAT 标签处的指令将被重复执行。最后,代码将结果存储在 RESULT 变量中,然后进入一个名为 HERE 的标签处,无限循环等待。此外,代码定义了一个名为 DataSpace 的区域,类型为 DATA,可读可写,定义了 RESULT 变量并初始化为0。

相关推荐

帮我分析如下代码:;GPIO for ASM BIT0 EQU 0X00000001 BIT6 EQU 0X00000040 BIT4 EQU 0X0000000F LED0 EQU BIT0 GPIOC EQU 0X40011000 GPIOC_CRL EQU 0X40011000 GPIOC_CRH EQU 0X40011004 GPIOC_ODR EQU 0X4001100C GPIOC_BSRR EQU 0X40011010 GPIOC_BRR EQU 0X40011014 IOPCEN EQU BIT4 RCC_APB2ENR EQU 0X40021018 STACK_TOP EQU 0X20002000 AREA RESET,CODE,READONLY DCD STACK_TOP DCD START ENTRY START BL.W RCC_CONFIG_72MHZ LDR R1,=RCC_APB2ENR LDR R0,[R1] LDR R2,=IOPCEN ORR R0,R2 STR R0,[R1] MOV R0,#0X0003 LDR R1,=GPIOC_CRL STR R0,[R1] NOP NOP LDR R1,=GPIOC_ODR LDR R2,=0X00000001 LOOP STR R2,[R1] MOV R0,#45 BL.W DELAY_NMS EOR R2,#LED0 B LOOP ;RCC SETTING HCLK=72MHZ=HSE*9 ;PCLK2=HCLK PCLK1=HCLK/2 RCC_CONFIG_72MHZ LDR R1,=0X40021000 ;RCC_CR LDR R0,[R1] LDR R2,=0X00010000 ;HSEON ORR R0,R2 STR R0,[R1] WAIT_HSE_RDY LDR R2,=0X00020000 ;HSERDY LDR R0,[R1] ANDS R0,R2 CMP R0,#0 BEQ WAIT_HSE_RDY LDR R1,=0X40022000 ;FLASH_ACR MOV R0,#0X12 STR R0,[R1] LDR R1,=0X40021004 ;RCC_CFGR LDR R0,[R1] ;PLL Clock Multiplier Factor,PCLK2,PCLK1 Clock divide factor ;HSE 9*PCLK2=HCLK,PCLK1=HCLK/2 ;HCLK=72MHZ 0X001D0400 LDR R2,=0X001D0400 ORR R0,R2 STR R0,[R1] LDR R1,=0X40021000 ;RCC_CR LDR R0,[R1] LDR R2,=0X01000000 ;PLLON ORR R0,R2 STR R0,[R1] WAIT_PLL_RDY LDR R2,=0X02000000 ;PLLRDY LDR R0,[R1] ANDS R0,R2 CMP R0,#0 BEQ WAIT_PLL_RDY LDR R1,=0X40021004 ;RCC_CFGR LDR R0,[R1] MOV R2,#0X02 ORR R0,R2 STR R0,[R1] WAIT_HCLK_USEPLL LDR R0,[R1] ANDS R0,#0X08 CMP R0,#0X08 BNE WAIT_HCLK_USEPLL BX LR ;DELAY R0 MS, error ((R0-1)*4+12)/8 US ;DELAY TOO LONG ,THE ERROR IS LITTLE THAN 0.1% DELAY_NMS PUSH {R1} DELAY_NMSLOOP SUB R0,#1 MOV R1,#1000 DELAY_ONEUS SUB R1,#1 NOP NOP NOP CMP R1,#0 BNE DELAY_ONEUS CMP R0,#0 BNE DELAY_NMSLOOP POP {R1} BX LR NOP ;ALIGN code END

这段代码中pc如何计算USR_STACK_LEGTH EQU 64 SVC_STACK_LEGTH EQU 0 FIQ_STACK_LEGTH EQU 16 IRQ_STACK_LEGTH EQU 64 ABT_STACK_LEGTH EQU 0 UND_STACK_LEGTH EQU 0 AREA Example5,CODE,READONLY ; 声明代码段Example5 ENTRY ; 标识程序入口 CODE32 ; 声明32位ARM指令 START MOV R0,#0 MOV R1,#1 MOV R2,#2 MOV R3,#3 MOV R4,#4 MOV R5,#5 MOV R6,#6 MOV R7,#7 MOV R8,#8 MOV R9,#9 MOV R10,#10 MOV R11,#11 MOV R12,#12 BL InitStack ; 初始化各模式下的堆栈指针 ; 打开IRQ中断 (将CPSR寄存器的I位清零) MRS R0,CPSR ; R0 <= CPSR BIC R0,R0,#0x80 MSR CPSR_cxsf,R0 ; CPSR <= R0 ; 切换到用户模式 MSR CPSR_c, #0xd0 MRS R0,CPSR ; 切换到管理模式 MSR CPSR_c, #0xdf MRS R0,CPSR HALT B HALT ; 堆栈初始化 InitStack MOV R0, LR ; R0 <= LR,因为各种模式下R0是相同的 MSR CPSR_c, #0xd3 ;设置管理模式堆栈 LDR SP, StackSvc MSR CPSR_c, #0xd2 ;设置中断模式堆栈 LDR SP, StackIrq MSR CPSR_c, #0xd1 ;设置快速中断模式堆栈 LDR SP, StackFiq MSR CPSR_c, #0xd7 ;设置中止模式堆栈 LDR SP, StackAbt MSR CPSR_c, #0xdb ;设置未定义模式堆栈 LDR SP, StackUnd MSR CPSR_c, #0xdf ;设置系统模式堆栈 LDR SP, StackUsr MOV PC, R0 StackUsr DCD UsrStackSpace + (USR_STACK_LEGTH - 1)*4 StackSvc DCD SvcStackSpace + (SVC_STACK_LEGTH - 1)*4 StackIrq DCD IrqStackSpace + (IRQ_STACK_LEGTH - 1)*4 StackFiq DCD FiqStackSpace + (FIQ_STACK_LEGTH - 1)*4 StackAbt DCD AbtStackSpace + (ABT_STACK_LEGTH - 1)*4 StackUnd DCD UndtStackSpace + (UND_STACK_LEGTH - 1)*4 ; 分配堆栈空间 AREA MyStacks, DATA, NOINIT, ALIGN=2 UsrStackSpace SPACE USR_STACK_LEGTH * 4 ; 用户(sys)模式堆栈SvcStackSpace SPACE SVC_STACK_LEGTH * 4 ; 管理模式堆栈空间 IrqStackSpace SPACE IRQ_STACK_LEGTH * 4 ; 中断模式堆栈空间 FiqStackSpace SPACE FIQ_STACK_LEGTH * 4 ; 快速中断模式堆栈空间 AbtStackSpace SPACE ABT_STACK_LEGTH * 4 ; 中止义模式堆栈空间 UndtStackSpace SPACE UND_STACK_LEGTH * 4 ; 未定义模式堆栈 END

AREA Reset, CODE, READONLY ; 定义常量 A EQU 5 ; 数字A存储在内存地址5处 B EQU 6 ; 数字B存储在内存地址6处 LEFT_LED EQU 0x10000000 ; 左LED的控制寄存器 RIGHT_LED EQU 0x10000004 ; 右LED的控制寄存器 ; 启动代码 ENTRY LDR r1, =A ; 将数字A的地址存储到寄存器r1中 LDR r2, =B ; 将数字B的地址存储到寄存器r2中 LDR r3, [r1] ; 将数字A的值加载到寄存器r3中 LDR r4, [r2] ; 将数字B的值加载到寄存器r4中 CMP r3, r4 ; 比较数字A和数字B BEQ EQUAL ; 如果A=B,则跳转到EQUAL标签 BLT LESS ; 如果A<B,则跳转到LESS标签 BGT GREATER ; 如果A>B,则跳转到GREATER标签 LESS STR r3, [r2] ; 将数字A的值存储到数字B的地址中 STR r4, [r1] ; 将数字B的值存储到数字A的地址中 MOV r0, #1 ; 将1存储到寄存器r0中,表示打开左LED LDR r1, =LEFT_LED ; 将左LED的控制寄存器地址存储到寄存器r1中 STR r0, [r1] ; 将寄存器r0中的值存储到左LED的控制寄存器中 B END ; 跳转到END标签 GREATER MOV r0, #1 ; 将1存储到寄存器r0中,表示打开右LED LDR r1, =RIGHT_LED ; 将右LED的控制寄存器地址存储到寄存器r1中 STR r0, [r1] ; 将寄存器r0中的值存储到右LED的控制寄存器中 B END ; 跳转到END标签 EQUAL MOV r0, #3 ; 将3存储到寄存器r0中,表示打开两个LED LDR r1, =LEFT_LED ; 将左LED的控制寄存器地址存储到寄存器r1中 STR r0, [r1] ; 将寄存器r0中的值存储到左LED的控制寄存器中 LDR r1, =RIGHT_LED ; 将右LED的控制寄存器地址存储到寄存器r1中 STR r0, [r1] ; 将寄存器r0中的值存储到右LED的控制寄存器中 B END ; 跳转到END标签 END B END ; 无限循环,改正这段代码的错误

最新推荐

recommend-type

解决出现Incorrect integer value: '' for column 'id' at row 1的问题

主要介绍了解决出现Incorrect integer value: '' for column 'id' at row 1的问题的相关资料,希望通过本文能帮助到大家,让大家遇到这样的问题及时的解决,需要的朋友可以参考下
recommend-type

基于MATLAB的RBF神经网络的pid仿真

使用MATLAB软件中的simulink模块,进行RBF神经网络的PID控制仿真模拟。
recommend-type

2024年东南亚短波红外(SWIR)市场深度研究及预测报告.pdf

东南亚位于我国倡导推进的“一带一路”海陆交汇地带,作为当今全球发展最为迅速的地区之一,近年来区域内生产总值实现了显著且稳定的增长。根据东盟主要经济体公布的最新数据,印度尼西亚2023年国内生产总值(GDP)增长5.05%;越南2023年经济增长5.05%;马来西亚2023年经济增速为3.7%;泰国2023年经济增长1.9%;新加坡2023年经济增长1.1%;柬埔寨2023年经济增速预计为5.6%。 东盟国家在“一带一路”沿线国家中的总体GDP经济规模、贸易总额与国外直接投资均为最大,因此有着举足轻重的地位和作用。当前,东盟与中国已互相成为双方最大的交易伙伴。中国-东盟贸易总额已从2013年的443亿元增长至 2023年合计超逾6.4万亿元,占中国外贸总值的15.4%。在过去20余年中,东盟国家不断在全球多变的格局里面临挑战并寻求机遇。2023东盟国家主要经济体受到国内消费、国外投资、货币政策、旅游业复苏、和大宗商品出口价企稳等方面的提振,经济显现出稳步增长态势和强韧性的潜能。 本调研报告旨在深度挖掘东南亚市场的增长潜力与发展机会,分析东南亚市场竞争态势、销售模式、客户偏好、整体市场营商环境,为国内企业出海开展业务提供客观参考意见。 本文核心内容: 市场空间:全球行业市场空间、东南亚市场发展空间。 竞争态势:全球份额,东南亚市场企业份额。 销售模式:东南亚市场销售模式、本地代理商 客户情况:东南亚本地客户及偏好分析 营商环境:东南亚营商环境分析 本文纳入的企业包括国外及印尼本土企业,以及相关上下游企业等,部分名单 QYResearch是全球知名的大型咨询公司,行业涵盖各高科技行业产业链细分市场,横跨如半导体产业链(半导体设备及零部件、半导体材料、集成电路、制造、封测、分立器件、传感器、光电器件)、光伏产业链(设备、硅料/硅片、电池片、组件、辅料支架、逆变器、电站终端)、新能源汽车产业链(动力电池及材料、电驱电控、汽车半导体/电子、整车、充电桩)、通信产业链(通信系统设备、终端设备、电子元器件、射频前端、光模块、4G/5G/6G、宽带、IoT、数字经济、AI)、先进材料产业链(金属材料、高分子材料、陶瓷材料、纳米材料等)、机械制造产业链(数控机床、工程机械、电气机械、3C自动化、工业机器人、激光、工控、无人机)、食品药品、医疗器械、农业等。邮箱:market@qyresearch.com
recommend-type

附件:通江县2024年公开考试招聘卫生事业单位专业技术人员岗位及条件要求一览表.pdf

附件:通江县2024年公开考试招聘卫生事业单位专业技术人员岗位及条件要求一览表.pdf
recommend-type

谷歌文件系统下的实用网络编码技术在分布式存储中的应用

"本文档主要探讨了一种在谷歌文件系统(Google File System, GFS)下基于实用网络编码的策略,用于提高分布式存储系统的数据恢复效率和带宽利用率,特别是针对音视频等大容量数据的编解码处理。" 在当前数字化时代,数据量的快速增长对分布式存储系统提出了更高的要求。分布式存储系统通过网络连接的多个存储节点,能够可靠地存储海量数据,并应对存储节点可能出现的故障。为了保证数据的可靠性,系统通常采用冗余机制,如复制和擦除编码。 复制是最常见的冗余策略,简单易行,即每个数据块都会在不同的节点上保存多份副本。然而,这种方法在面对大规模数据和高故障率时,可能会导致大量的存储空间浪费和恢复过程中的带宽消耗。 相比之下,擦除编码是一种更为高效的冗余方式。它将数据分割成多个部分,然后通过编码算法生成额外的校验块,这些校验块可以用来在节点故障时恢复原始数据。再生码是擦除编码的一个变体,它在数据恢复时只需要下载部分数据,从而减少了所需的带宽。 然而,现有的擦除编码方案在实际应用中可能面临效率问题,尤其是在处理大型音视频文件时。当存储节点发生故障时,传统方法需要从其他节点下载整个文件的全部数据,然后进行重新编码,这可能导致大量的带宽浪费。 该研究提出了一种实用的网络编码方法,特别适用于谷歌文件系统环境。这一方法优化了数据恢复过程,减少了带宽需求,提高了系统性能。通过智能地利用网络编码,即使在节点故障的情况下,也能实现高效的数据修复,降低带宽的浪费,同时保持系统的高可用性。 在音视频编解码场景中,这种网络编码技术能显著提升大文件的恢复速度和带宽效率,对于需要实时传输和处理的媒体服务来说尤其重要。此外,由于网络编码允许部分数据恢复,因此还能减轻对网络基础设施的压力,降低运营成本。 总结起来,这篇研究论文为分布式存储系统,尤其是处理音视频内容的系统,提供了一种创新的网络编码策略,旨在解决带宽效率低下和数据恢复时间过长的问题。这一方法对于提升整个系统性能,保证服务的连续性和可靠性具有重要的实践意义。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【功率因数校正秘籍】:10个步骤提升电能利用率

![【功率因数校正秘籍】:10个步骤提升电能利用率](https://img-blog.csdnimg.cn/direct/829b6c5a308c40129620b20de2ebfcd9.png) # 1. 功率因数校正概述 功率因数是衡量交流电系统中有效功率与视在功率之比的指标,反映了电能利用的效率。当功率因数较低时,系统中的无功功率会增加,导致电能损耗、电压波动和电网容量浪费等问题。 功率因数校正是一种通过增加或减少无功功率来提高功率因数的技术。通过安装无功补偿设备,如电容器或电抗器,可以抵消感性或容性负载产生的无功功率,从而提高系统中的功率因数。功率因数校正不仅可以节约电能,还可以
recommend-type

``` if build_id then -- 单个屋子 else -- 所有屋子 end ```

在你的代码片段中,`build_id` 的存在与否决定了执行不同的逻辑。如果 `build_id` 为真(非空或非零),则执行针对单个屋子的代码;否则,执行针对所有屋子的代码。这种结构在 Lua 中已经相对简洁,但为了提高可读性和潜在的性能优化,你可以考虑以下几点: 1. **使用更明确的条件语句**:可以使用 `if build_id ~= nil` 替换 `if build_id then`,因为 `nil` 在 Lua 中被视为 `false`。 2. **逻辑封装**:如果两个分支的代码复杂度相当,可以考虑将它们抽象为函数,这样更易于维护和复用。 3. **避免不必要的布尔转换*
recommend-type

跨国媒体对南亚农村社会的影响:以斯里兰卡案例的社会学分析

本文档《音视频-编解码-关于跨国媒体对南亚农村群体的社会的社会学分析斯里兰卡案例研究G.pdf》主要探讨了跨国媒体在南亚农村社区中的社会影响,以斯里兰卡作为具体案例进行深入剖析。研究从以下几个方面展开: 1. 引言与研究概述 (1.1-1.9) - 介绍部分概述了研究的背景,强调了跨国媒体(如卫星电视、互联网等)在全球化背景下对南亚农村地区的日益重要性。 - 阐述了研究问题的定义,即跨国媒体如何改变这些社区的社会结构和文化融合。 - 提出了研究假设,可能是关于媒体对社会变迁、信息传播以及社区互动的影响。 - 研究目标和目的明确,旨在揭示跨国媒体在农村地区的功能及其社会学意义。 - 也讨论了研究的局限性,可能包括样本选择、数据获取的挑战或理论框架的适用范围。 - 描述了研究方法和步骤,包括可能采用的定性和定量研究方法。 2. 概念与理论分析 (2.1-2.7.2) - 跨国媒体与创新扩散的理论框架被考察,引用了Lerner的理论来解释信息如何通过跨国媒体传播到农村地区。 - 关于卫星文化和跨国媒体的关系,文章探讨了这些媒体如何成为当地社区共享的文化空间。 - 文献还讨论了全球媒体与跨国媒体的差异,以及跨国媒体如何促进社会文化融合。 - 社会文化整合的概念通过Ferdinand Tonnies的Gemeinshaft概念进行阐述,强调了跨国媒体在形成和维持社区共同身份中的作用。 - 分析了“社区”这一概念在跨国媒体影响下的演变,可能涉及社区成员间交流、价值观的变化和互动模式的重塑。 3. 研究计划与章节总结 (30-39) - 研究计划详细列出了后续章节的结构,可能包括对斯里兰卡特定乡村社区的实地考察、数据分析、以及结果的解读和讨论。 - 章节总结部分可能回顾了前面的理论基础,并预示了接下来将要深入研究的具体内容。 通过这份论文,作者试图通过细致的社会学视角,深入理解跨国媒体如何在南亚农村群体中扮演着连接、信息流通和文化融合的角色,以及这种角色如何塑造和影响他们的日常生活和社会关系。对于理解全球化进程中媒体的力量以及它如何塑造边缘化社区的动态变化,此篇研究具有重要的理论价值和实践意义。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依