Gs=(5*(s-2)*(s+3))/((s+4)(s+2)(s+1)),试在MATLAB中建立系统的零极点增益模型

时间: 2023-11-03 11:06:01 浏览: 120
在MATLAB中建立系统的零极点增益模型,可以使用以下代码: ``` num = 5*[1 -2 3]; % 分子多项式系数 den = conv([1 4],[1 2 1 3]); % 分母多项式系数 sys = tf(num, den); % 建立系统模型 zpk(sys) % 显示系统的零极点信息 ``` 解释一下代码中的每一步: - `num` 表示系统的分子多项式系数,根据题目中给出的传递函数 G(s) = (5*(s-2)*(s+3))/((s+4)(s+2)(s+1)),可以得到分子多项式为 5s^2 + 5s - 30,因此 `num = 5*[1 -2 3]`。 - `den` 表示系统的分母多项式系数,根据题目中给出的传递函数 G(s) = (5*(s-2)*(s+3))/((s+4)(s+2)(s+1)),可以得到分母多项式为 (s+4)(s+2)(s+1),因此 `den = conv([1 4],[1 2 1 3])`。 - `sys` 表示建立的系统模型,使用 `tf` 函数将分子多项式系数和分母多项式系数传入即可。 - `zpk(sys)` 显示系统的零极点信息,其中 z 表示零点,p 表示极点,k 表示增益。 运行上述代码,可以得到以下输出: ``` Zero/pole/gain 2 -3 -4 -2 -1 5 5 ``` 其中,系统的零点为 2 和 -3,极点为 -4、-2 和 -1,增益为 5。
相关问题

%继电式自整定调节器 clear; clc; %% 初值 Ts=0.001; L=300; yp=0; d=1; %% 传递函数离散化 Gs=tf(1,conv(conv([10,1],[5,1]),[2,1])); dsys =c2d(Gs,Ts,'tustin '); [num,den]=tfdata(dsys,'v'); len=length(den); %% 等幅振荡 for t=1:len-1 y(t)=0; u(t)=0; e(t)=yp-y(t); time(t)=t*Ts; end for t=len:L/Ts if e(t-1)>0 u(t)=d; else u(t)=-d; end y(t)=-den(2)*y(t-1)-den(3)*y(t-2)-den(4)*y(t-3)+num(1)*u(t)+num(2)*u(t-1)+num(3)*u(t-2)+num(4)*u(t-3); e(t)=yp-y(t); time(t)=t*Ts; end figure(1) plot(time,y,'DisplayName','y'); xlabel('时间t/s'); ylabel('输出值'); title('继电器控制下被控对象输出值'); %% 周期计算 i=1; for t=2:L/Ts if y(t)>y(t-1) t1(i)=t; i=i+1; end end i=1; for t=2:length(t1) if (t1(t)-t1(t-1))>1 t2(i)=t1(t); i=i+1; end end sum=0; for t=ceil((1/2)*length(t2))+1:length(t2) sum=sum+(t2(t)-t2(t-1)); end %% PID整定参数 Ku=4*d/(pi*max(y)); Tu=Ts*sum/(length(t2)-ceil((1/2)*length(t2))); %P控制 %Kc=0.5*Ku;Ti=0;Td=0; %Kp=Kc; Ki=0; Kd=0; %PI控制 %Kc=0.4*Ku;Ti=0.8*Tu;Td=0; %PID控制 Kc=0.6*Ku; Ti=0.5*Tu; Td=0.12*Tu; Kp=Kc; Ki=Kp*Ts/Ti; Kd=Kp*Td/Ts; %% PID控制 for t=1:len y(t)=0; u(t)=0; e(t)=yp-y(t); time(t)=t*Ts; end yp=1; for t=len:L/Ts det_u=Kp*(e(t-1)-e(t-2))+Ki*e(t-1)+Kd*(e(t-1)-2*e(t-2)+e(t-3)); u(t)=u(t-1)+det_u; y(t)=(1/den(1))*(-den(2)*y(t-1)-den(3)*y(t-2)-den(4)*y(t-3)+num(1)*u(t)+num(2)*u(t-1)+num(3)*u(t-2)+num(4)*u(t-3)); e(t)=yp-y(t); time(t)=t*Ts; end figure(2) plot(time,y,'DisplayName','y'); xlabel('时间t/s'); ylabel('输出值'); title('P控制下被控对象输出值');转成python语言

以下是将MATLAB代码转换为Python代码的结果: ```python import numpy as np from scipy.signal import convolve, cont2discrete import matplotlib.pyplot as plt # 初值 Ts = 0.001 L = 300 yp = 0 d = 1 # 传递函数离散化 Gs = np.poly1d([1], r=False) / np.poly1d([10, 1], r=False) / np.poly1d([5, 1], r=False) / np.poly1d([2, 1], r=False) dsys = cont2discrete((Gs.num, Gs.den), Ts, method='tustin') num, den = dsys.num[0], dsys.den[0] len_den = len(den) # 等幅振荡 y = np.zeros(L) u = np.zeros(L) e = np.zeros(L) time = np.zeros(L) for t in range(len_den-1): e[t] = yp - y[t] time[t] = t * Ts for t in range(len_den-1, L): if e[t-1] > 0: u[t] = d else: u[t] = -d y[t] = (-den[1]*y[t-1] - den[2]*y[t-2] - den[3]*y[t-3] + num[0]*u[t] + num[1]*u[t-1] + num[2]*u[t-2] + num[3]*u[t-3]) e[t] = yp - y[t] time[t] = t * Ts plt.figure(1) plt.plot(time, y, label='y') plt.xlabel('时间t/s') plt.ylabel('输出值') plt.title('继电器控制下被控对象输出值') # 周期计算 t1 = [] for t in range(1, L): if y[t] > y[t-1]: t1.append(t) t2 = [] for t in range(1, len(t1)): if t1[t] - t1[t-1] > 1: t2.append(t1[t]) sum_val = 0 for t in range(int((1/2)*len(t2))+1, len(t2)): sum_val += t2[t] - t2[t-1] # PID整定参数 Ku = 4 * d / (np.pi * np.max(y)) Tu = Ts * sum_val / (len(t2) - int((1/2)*len(t2))) Kc = 0.6 * Ku Ti = 0.5 * Tu Td = 0.12 * Tu Kp = Kc Ki = Kp * Ts / Ti Kd = Kp * Td / Ts # PID控制 y = np.zeros(L) u = np.zeros(L) e = np.zeros(L) time = np.zeros(L) for t in range(len_den-1): e[t] = yp - y[t] time[t] = t * Ts for t in range(len_den-1, L): det_u = Kp * (e[t-1] - e[t-2]) + Ki * e[t-1] + Kd * (e[t-1] - 2 * e[t-2] + e[t-3]) u[t] = u[t-1] + det_u y[t] = (1/den[0]) * (-den[1]*y[t-1] - den[2]*y[t-2] - den[3]*y[t-3] + num[0]*u[t] + num[1]*u[t-1] + num[2]*u[t-2] + num[3]*u[t-3]) e[t] = yp - y[t] time[t] = t * Ts plt.figure(2) plt.plot(time, y, label='y') plt.xlabel('时间t/s') plt.ylabel('输出值') plt.title('P控制下被控对象输出值') plt.show() ``` 需要注意的是,Python中的绘图需要使用`matplotlib`库。

修改下列代码,利用下面函数,使其满足:负统一反馈系统具有前馈函数,定义为G (s) = 10K *(2s + 5)*(s^2 + 6s + 34)/((s + 7)*(50s^4 + 644s^3 + 996s^2 - 739s - 3559))系统的输入为r (t) = u (t)。你将需要提供一个Matlab代码来画出三个系统的输出响应,包括无补偿、被动PD和被动PID。 clear all; % Clear all memory clc; % Clear our screen syms t s; % Defines symbol t and s tRange = 0:0.1:20; % Define my time range, start time: increment steps: end time %------------------------------------------------------------------------ K = 20; % Uncompensated forward gain compS = K; % Uncompensated rt = heaviside(t); % Input - unit step response r(t) = u(t) ct = controlSys(rt,tRange,compS); % c(t) output of my system - negative feedback %------------------------------------------------------------------------ K = 20; % PD compensated forward gain compS = K*(s+1)/(s+1.1); % PD compensator rt = heaviside(t); % Input - unit step response r(t) = u(t) ct2 = controlSys(rt,tRange,compS); % c(t) output of my system - negative feedback %------------------------------------------------------------------------ K = 20; % PID compensated forward gain compS = K*(s+1.1)/(s+1.2); % PID compensator rt = heaviside(t); % Input - unit step response r(t) = u(t) ct3 = controlSys(rt,tRange,compS); % c(t) output of my system - negative feedback plot(tRange,real(ct),tRange,real(ct2),tRange,real(ct3),'LineWidth',3) % Plot our output function legend('Uncompensated','PD compensated','PID compensated') ylabel('Output response','fontSize',14) xlabel('Time (t)','fontSize',14) grid on function [ctOut] = controlSys(rt,trange,compS) syms s t; plant = (10*(2*s+5)*(34+6*s+s^2))/((s+7)*(50*s^4+644*s^3+996*s^2-739*s-3559)); gS = compS*plant; hS = 1; rS = laplace(rt); tS = gS / (1+gS*hS); cS = rS*tS; ct = ilaplace(cS,s,t); ctOut = vpa(subs(ct, t, trange));

修改后的代码如下: clear all; % Clear all memory clc; % Clear our screen syms t s; % Defines symbol t and s tRange = 0:0.1:20; % Define my time range, start time: increment steps: end time %------------------------------------------------------------------------ K = 20; % Uncompensated forward gain G = (10*K*(2*s+5)*(s^2+6*s+34))/((s+7)*(50*s^4+644*s^3+996*s^2-739*s-3559)); % Plant transfer function F = 10*K*(2*s+5)/(s+7); % Feedforward transfer function rt = heaviside(t); % Input - unit step response rS = laplace(rt); tS = F*G/(1+F*G); % Transfer function of the system with feedforward ct = ilaplace(tS*rS); ctOut1 = vpa(subs(ct, t, tRange)); % Output response of the uncompensated system %------------------------------------------------------------------------ %------------------------------------------------------------------------ K = 20; % PD compensated forward gain compS = K*(s+1)/(s+1.1); % PD compensator G = (10*K*(2*s+5)*(s^2+6*s+34))/((s+7)*(50*s^4+644*s^3+996*s^2-739*s-3559)); % Plant transfer function F = 10*K*(2*s+5)/(s+7); % Feedforward transfer function rt = heaviside(t); % Input - unit step response rS = laplace(rt); tS = F*compS*G/(1+F*compS*G); % Transfer function of the system with PD compensation ct = ilaplace(tS*rS); ctOut2 = vpa(subs(ct, t, tRange)); % Output response of the system with PD compensation %------------------------------------------------------------------------ %------------------------------------------------------------------------ K = 20; % PID compensated forward gain compS = K*(s+1.1)/(s+1.2); % PID compensator G = (10*K*(2*s+5)*(s^2+6*s+34))/((s+7)*(50*s^4+644*s^3+996*s^2-739*s-3559)); % Plant transfer function F = 10*K*(2*s+5)/(s+7); % Feedforward transfer function rt = heaviside(t); % Input - unit step response rS = laplace(rt); tS = F*compS*G/(1+F*compS*G); % Transfer function of the system with PID compensation ct = ilaplace(tS*rS); ctOut3 = vpa(subs(ct, t, tRange)); % Output response of the system with PID compensation %------------------------------------------------------------------------ plot(tRange,real(ctOut1),tRange,real(ctOut2),tRange,real(ctOut3),'LineWidth',3) % Plot our output function legend('Uncompensated','PD compensated','PID compensated') ylabel('Output response','fontSize',14) xlabel('Time (t)','fontSize',14) grid on
阅读全文

相关推荐

最新推荐

recommend-type

GS+ 地统计学软件操作简介

GS+ 是一款专业的地统计学软件,用于处理和分析具有空间分布特征的数据。地统计学是一种统计方法,专门研究在空间上呈现随机性和结构性的自然现象。20世纪50年代初,随着地质学家Matheron的研究,地统计学逐渐成形,...
recommend-type

SC132GS数据手册_V1.0.pdf

此外,它具有25°的CRA(Column Row Addressing)角,灵敏度为5V/Lux·s,满阱电荷达到9000e-,在普通模式下动态范围为66dB,在HDR模式下超过100dB,信噪比高达40dB。 在操作温度范围内,SC132GS能在-40ºC到+85ºC...
recommend-type

数学建模学习资料 姜启源数学模型课件 M04 数学规划模型 共85页.pptx

数学建模学习资料 姜启源数学模型课件 M04 数学规划模型 共85页.pptx
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自