dataframe删除缺失值行
时间: 2023-10-01 20:10:19 浏览: 81
缺失数据删除
在 Pandas 中,可以使用 `dropna()` 方法删除包含缺失值的行。
例如,假设有一个名为 `df` 的 DataFrame,其中包含缺失值。可以使用以下代码删除所有包含缺失值的行:
```python
df = df.dropna()
```
默认情况下,`dropna()` 方法将删除包含任何缺失值的行。如果你只想删除包含特定列缺失值的行,可以使用 `subset` 参数:
```python
df = df.dropna(subset=['column1', 'column2'])
```
此代码将仅删除 `column1` 和 `column2` 中包含缺失值的行。
阅读全文