for i in range(60,len(test_set)): x_test.append(test_set[i-60:i,0]) y_test.append(test_set[i,0])
时间: 2023-12-06 10:40:15 浏览: 64
这段代码是在处理时间序列数据时,将测试集分成了多个样本,每个样本长度为60。具体来说,对于测试集中的每个时间步,都以它为结尾,向前选取60个时间步作为一个样本,把这些样本存储在 x_test 中,对应的目标值(即该时间步的真实值)则存储在 y_test 中。这样就可以用 x_test 中的样本预测 y_test 中对应的目标值了。
相关问题
import torch import torch.utils.data as Data import numpy as np class BatchDataset(Data.Dataset): def __init__(self, x, y): self.x = x self.y = y def __len__(self): return len(self.x) def __getitem__(self, index): return self.x[index], self.y[index] def split_data(stock, lookback, in_list, out_index): data_raw = stock.to_numpy() # convert to numpy array data = [] # create all possible sequences of length seq_len for index in range(len(data_raw) - lookback): data.append(data_raw[index: index + lookback]) data = np.array(data) test_set_size = int(np.round(0.2*data.shape[0])) train_set_size = data.shape[0] - (test_set_size) x_train = data[:train_set_size,:-1,in_list] y_train = data[:train_set_size,-1,out_index,None] x_test = data[train_set_size:,:-1,in_list] y_test = data[train_set_size:,-1,out_index,None] return [x_train, y_train, x_test, y_test] 请给我这段代码的伪代码
这这段这段代码这段代码主这段代码主要这段代码主要是这段代码主要是定义这段代码主要是定义了这段代码主要是定义了一个这段代码主要是定义了一个 Batch这段代码主要是定义了一个 BatchDataset这段代码主要是定义了一个 BatchDataset 类这段代码主要是定义了一个 BatchDataset 类,这段代码主要是定义了一个 BatchDataset 类,用这段代码主要是定义了一个 BatchDataset 类,用于这段代码主要是定义了一个 BatchDataset 类,用于处理这段代码主要是定义了一个 BatchDataset 类,用于处理数据这段代码主要是定义了一个 BatchDataset 类,用于处理数据集这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和重这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和重组这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和重组,这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和重组,得这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和重组,得到这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和重组,得到一个这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和重组,得到一个满这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和重组,得到一个满足这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和重组,得到一个满足要这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和重组,得到一个满足要求这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和重组,得到一个满足要求的这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和重组,得到一个满足要求的数据这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和重组,得到一个满足要求的数据集这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和重组,得到一个满足要求的数据集。
import os import pandas as pd from tsfresh import extract_features, select_features from tsfresh.utilities.dataframe_functions import impute # 定义文件夹路径 train_folder_path = 'IEEE PHM 2012/Learning_set/Bearing1_1' test_folder_path = 'IEEE PHM 2012/Test_set/Bearing1_3' # 定义文件名前缀 file_prefix = 'acc_' # 定义文件扩展名 file_ext = '.csv' # 定义数据集列表 train_data = [] test_data = [] # 循环读取训练集文件 for i in range(1, 7): train_file_path = os.path.join(train_folder_path, file_prefix + '{:05d}'.format(i) + file_ext) train_data.append(pd.read_csv(train_file_path, header=None)) # 循环读取测试集文件 for i in range(1, 5): test_file_path = os.path.join(test_folder_path, file_prefix + '{:05d}'.format(i) + file_ext) test_data.append(pd.read_csv(test_file_path, header=None)) train_features = [] test_features = [] # 提取训练集特征 for i in range(len(train_data)): features = extract_features(train_data[i], column_id=0, column_sort=1) train_features.append(features) # 提取测试集特征 for i in range(len(test_data)): features = extract_features(test_data[i], column_id=0, column_sort=1) test_features.append(features) # 将特征转化为pandas DataFrame并保存到csv文件中 train_features_df = pd.concat(train_features) train_features_df.to_csv('train_features.csv', index=False) test_features_df = pd.concat(test_features) test_features_df.to_csv('test_features.csv', index=False)以上代码有何问题
以上代码可能会出现以下问题:
1. 缺少必要的库引用语句。需要添加以下语句:
```
from tsfresh import extract_features
from tsfresh.utilities.dataframe_functions import impute
```
2. `train_data` 和 `test_data` 列表中的元素都是 pandas DataFrame,因此在调用 `extract_features` 函数时,需要将 DataFrame 作为函数的第一个参数传递,而不是作为文件路径传递。
```
features = extract_features(train_data[i], column_id=0, column_sort=1)
```
3. 在将特征转换为 pandas DataFrame 时,需要使用 `pd.concat` 函数将所有特征连接起来。同时,需要将 `index` 参数设置为 False,以避免生成额外的索引列。
```
train_features_df = pd.concat(train_features)
train_features_df.to_csv('train_features.csv', index=False)
test_features_df = pd.concat(test_features)
test_features_df.to_csv('test_features.csv', index=False)
```
除此之外,还需要确保文件路径的正确性和文件格式的一致性,以及在提取特征时选择合适的 `column_id` 和 `column_sort` 参数。
阅读全文
相关推荐

















